Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105047, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451483

RESUMEN

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Asunto(s)
Mitocondrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidasa/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Oxidación-Reducción , Aminoácidos/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542149

RESUMEN

Enzymes reliant on pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, hold significant importance in both biology and medicine. They facilitate various biochemical reactions, particularly in amino acid and neurotransmitter metabolisms. Vitamin B6 is absorbed by organisms in its non-phosphorylated form and phosphorylated within cells via pyridoxal kinase (PLK) and pyridox-(am)-ine 5'-phosphate oxidase (PNPOx). The flavin mononucleotide-dependent PNPOx enzyme converts pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate into PLP. PNPOx is vital for both biosynthesis and salvage pathways in organisms producing B6 vitamers. However, for those depending on vitamin B6 as a nutrient, PNPOx participates only in the salvage pathway. Transferring the PLP produced via PNPOx to client apo-enzymes is indispensable for their catalytic function, proper folding and targeting of specific organelles. PNPOx activity deficiencies due to inborn errors lead to severe neurological pathologies, particularly neonatal epileptic encephalopathy. PNPOx maintains PLP homeostasis through highly regulated mechanisms, including structural alterations throughout the catalytic cycle and allosteric PLP binding, influencing substrate transformation at the active site. Elucidation at the molecular level of the mechanisms underlying PNPOx activity deficiencies is a requirement to develop personalized approaches to treat related disorders. Finally, despite shared features, the few PNPOx enzymes molecularly and functionally studied show species-specific regulatory properties that open the possibility of targeting it in pathogenic organisms.


Asunto(s)
Enfermedades Metabólicas , Piridoxaminafosfato Oxidasa , Humanos , Recién Nacido , Oxidorreductasas , Fosfatos , Piridoxaminafosfato Oxidasa/metabolismo , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Piridoxina , Vitaminas
3.
J Biol Chem ; 296: 100795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019876

RESUMEN

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a pivotal role in metabolism as an enzyme cofactor. PLP is a very reactive molecule and can be very toxic unless its intracellular concentration is finely regulated. In Escherichia coli, PLP formation is catalyzed by pyridoxine 5'-phosphate oxidase (PNPO), a homodimeric FMN-dependent enzyme that is responsible for the last step of PLP biosynthesis and is also involved in the PLP salvage pathway. We have recently observed that E. coli PNPO undergoes an allosteric feedback inhibition by PLP, caused by a strong allosteric coupling between PLP binding at the allosteric site and substrate binding at the active site. Here we report the crystallographic identification of the PLP allosteric site, located at the interface between the enzyme subunits and mainly circumscribed by three arginine residues (Arg23, Arg24, and Arg215) that form an "arginine cage" and efficiently trap PLP. The crystal structure of the PNPO-PLP complex, characterized by a marked structural asymmetry, presents only one PLP molecule bound at the allosteric site of one monomer and sheds light on the allosteric inhibition mechanism that makes the enzyme-substrate-PLP ternary complex catalytically incompetent. Site-directed mutagenesis studies focused on the arginine cage validate the identity of the allosteric site and provide an effective means to modulate the allosteric properties of the enzyme, from the loosening of the allosteric coupling (in the R23L/R24L and R23L/R215L variants) to the complete loss of allosteric properties (in the R23L/R24L/R21L variant).


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Sitio Alostérico , Cristalografía por Rayos X , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Conformación Proteica , Piridoxaminafosfato Oxidasa/química
4.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614085

RESUMEN

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, serves as a cofactor for scores of B6-dependent (PLP-dependent) enzymes involved in many cellular processes. One such B6 enzyme is dopa decarboxylase (DDC), which is required for the biosynthesis of key neurotransmitters, e.g., dopamine and serotonin. PLP-dependent enzymes are biosynthesized as apo-B6 enzymes and then converted to the catalytically active holo-B6 enzymes by Schiff base formation between the aldehyde of PLP and an active site lysine of the protein. In eukaryotes, PLP is made available to the B6 enzymes through the activity of the B6-salvage enzymes, pyridoxine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PLK). To minimize toxicity, the cell keeps the content of free PLP (unbound) very low through dephosphorylation and PLP feedback inhibition of PNPO and PLK. This has led to a proposed mechanism of complex formation between the B6-salvage enzymes and apo-B6 enzymes prior to the transfer of PLP, although such complexes are yet to be characterized at the atomic level, presumably due to their transient nature. A computational study, for the first time, was used to predict a likely PNPO and DDC complex, which suggested contact between the allosteric PLP tight-binding site on PNPO and the active site of DDC. Using isothermal calorimetry and/or surface plasmon resonance, we also show that PNPO binds both apoDDC and holoDDC with dissociation constants of 0.93 ± 0.07 µM and 2.59 ± 0.11 µM, respectively. Finally, in the presence of apoDDC, the tightly bound PLP on PNPO is transferred to apoDDC, resulting in the formation of about 35% holoDDC.


Asunto(s)
Piridoxaminafosfato Oxidasa , Piridoxina , Piridoxaminafosfato Oxidasa/metabolismo , Dopa-Decarboxilasa , Fosfato de Piridoxal/metabolismo , Oxidorreductasas , Piridoxal Quinasa/metabolismo
5.
Hum Mol Genet ; 28(18): 3126-3136, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31261385

RESUMEN

Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.


Asunto(s)
Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/genética , Mutación , Fenotipo , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones/diagnóstico , Convulsiones/genética , Alimentación Animal , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías Metabólicas/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Epilepsia , Técnicas de Silenciamiento del Gen , Genes Letales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Redes y Vías Metabólicas , Piridoxaminafosfato Oxidasa/genética , Piridoxaminafosfato Oxidasa/metabolismo , Interferencia de ARN , Convulsiones/metabolismo
6.
Clin Genet ; 99(1): 99-110, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888189

RESUMEN

Pyridoxamine-5'-phosphate oxidase (PNPO) deficiency is an autosomal recessive pyridoxal 5'-phosphate (PLP)-vitamin-responsive epileptic encephalopathy. The emerging feature of PNPO deficiency is the occurrence of refractory seizures in the first year of life. Pre-maturity and fetal distress, combined with neonatal seizures, are other associated key characteristics. The phenotype results from a dependency of PLP which regulates several enzymes in the body. We present the phenotypic and genotypic spectrum of (PNPO) deficiency based on a literature review (2002-2020) of reports (n = 33) of patients with confirmed PNPO deficiency (n = 87). All patients who received PLP (n = 36) showed a clinical response, with a complete dramatic PLP response with seizure cessation observed in 61% of patients. In spite of effective seizure control with PLP, approximately 56% of patients affected with PLP-dependent epilepsy suffer developmental delay/intellectual disability. There is no diagnostic biomarker, and molecular testing required for diagnosis. However, we noted that cerebrospinal fluid (CSF) PLP was low in 81%, CSF glycine was high in 80% and urinary vanillactic acid was high in 91% of the cases. We observed only a weak correlation between the severity of PNPO protein disruption and disease outcomes, indicating the importance of other factors, including seizure onset and time of therapy initiation. We found that pre-maturity, the delay in initiation of PLP therapy and early onset of seizures correlate with a poor neurocognitive outcome. Given the amenability of PNPO to PLP therapy for seizure control, early diagnosis is essential.


Asunto(s)
Encefalopatías Metabólicas/genética , Epilepsia/genética , Hipoxia-Isquemia Encefálica/genética , Enfermedades Metabólicas/genética , Piridoxaminafosfato Oxidasa/deficiencia , Piridoxaminafosfato Oxidasa/genética , Convulsiones/genética , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/fisiopatología , Epilepsia/fisiopatología , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Mutación/genética , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Convulsiones/metabolismo , Convulsiones/fisiopatología
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769443

RESUMEN

Several variants of the enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), responsible for a rare form of vitamin B6-dependent neonatal epileptic encephalopathy known as PNPO deficiency (PNPOD), have been reported. However, only a few of them have been characterised with respect to their structural and functional properties, despite the fact that the knowledge of how variants affect the enzyme may clarify the disease mechanism and improve treatment. Here, we report the characterisation of the catalytic, allosteric and structural properties of recombinantly expressed D33V, R161C, P213S, and E50K variants, among which D33V (present in approximately 10% of affected patients) is one of the more common variants responsible for PNPOD. The D33V and E50K variants have only mildly altered catalytic properties. In particular, the E50K variant, given that it has been found on the same chromosome with other known pathogenic variants, may be considered non-pathogenic. The P213S variant has lower thermal stability and reduced capability to bind the FMN cofactor. The variant involving Arg161 (R161C) largely decreases the affinity for the pyridoxine 5'-phosphate substrate and completely abolishes the allosteric feedback inhibition exerted by the pyridoxal 5'-phosphate product.


Asunto(s)
Encefalopatías Metabólicas/genética , Epilepsia/genética , Hipoxia-Isquemia Encefálica/genética , Mutación , Fosfato de Piridoxal/análogos & derivados , Piridoxaminafosfato Oxidasa/deficiencia , Piridoxaminafosfato Oxidasa/genética , Convulsiones/genética , Vitamina B 6/metabolismo , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Epilepsia/metabolismo , Epilepsia/patología , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Recién Nacido , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Relación Estructura-Actividad
8.
J Struct Biol ; 212(3): 107645, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045383

RESUMEN

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for more than 140 enzymes. This coenzyme plays a pivotal role in catalysis of various enzymatic reactions that are critical for the survival of organisms. Entamoeba histolytica depends on the uptake of pyridoxal (PL), a B6 vitamer from the external environment which is then phosphorylated by pyridoxal kinase (EhPLK) to form PLP via the salvage pathway. E. histolytica cannot synthesise vitamin B6de-novo, and also lacks pyridoxine 5'-phosphate oxidase, a salvage pathway enzyme required to produce PLP from pyridoxine phosphate (PNP) and pyridoxamine phosphate (PMP). Analysing the importance of PLK in E. histolytica, we have determined the high-resolution crystal structures of the dimeric pyridoxal kinase in apo, ADP-bound, and PLP-bound states. These structures provided a snapshot of the transition state and help in understanding the reaction mechanism in greater detail. The EhPLK structure significantly differed from the human homologue at its PLP binding site, and the phylogenetic study also revealed its divergence from human PLK. Further, gene regulation of EhPLK using sense and antisense RNA showed that any change in optimal level is harmful to the pathogen. Biochemical and in vivo studies unveiled EhPLK to be essential for this pathogen, while the molecular differences with human PLK structure can be exploited for the structure-guided design of EhPLK inhibitors.


Asunto(s)
Entamoeba histolytica/metabolismo , Piridoxal Quinasa/metabolismo , Sitios de Unión/fisiología , Catálisis , Fosforilación/fisiología , Filogenia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Vitamina B 6/metabolismo
9.
J Biol Chem ; 294(43): 15593-15603, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31484724

RESUMEN

In Escherichia coli, the synthesis of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, takes place through the so-called deoxyxylulose 5-phosphate-dependent pathway, whose last step is pyridoxine 5'-phosphate (PNP) oxidation to PLP, catalyzed by the FMN-dependent enzyme PNP oxidase (PNPOx). This enzyme plays a pivotal role in controlling intracellular homeostasis and bioavailability of PLP. PNPOx has been proposed to undergo product inhibition resulting from PLP binding at the active site. PLP has also been reported to bind tightly at a secondary site, apparently without causing PNPOx inhibition. The possible location of this secondary site has been indicated by crystallographic studies as two symmetric surface pockets present on the PNPOx homodimer, but this site has never been verified by other experimental means. Here, we demonstrate, through kinetic measurements, that PLP inhibition is actually of a mixed-type nature and results from binding of this vitamer at an allosteric site. This interpretation was confirmed by the characterization of a mutated PNPOx form, in which substrate binding at the active site is heavily hampered but PLP binding is preserved. Structural and functional connections between the active site and the allosteric site were indicated by equilibrium binding experiments, which revealed different PLP-binding stoichiometries with WT and mutant PNPOx forms. These observations open up new horizons on the mechanisms that regulate E. coli PNPOx, which may have commonalities with the mechanisms regulating human PNPOx, whose crucial role in vitamin B6 metabolism and epilepsy is well-known.


Asunto(s)
Escherichia coli/enzimología , Retroalimentación Fisiológica , Piridoxaminafosfato Oxidasa/antagonistas & inhibidores , Regulación Alostérica , Sitios de Unión , Biocatálisis , Cinética , Modelos Moleculares , Oxidación-Reducción , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/química , Piridoxaminafosfato Oxidasa/metabolismo , Análisis Espectral
10.
J Cell Physiol ; 235(1): 504-512, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506944

RESUMEN

Pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK) cooperate to produce pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PDXK phosphorylates pyridoxine, pyridoxamine, and pyridoxal by producing PNP, PMP, and PLP, whereas PNPO oxidizes PNP, PMP, into PLP. We previously demonstrated that PDXK depletion in Drosophila and human cells impacts on glucose metabolism and DNA integrity. Here we characterized sgll, the Drosophila ortholog of PNPO gene, showing that its silencing by RNA interference elicits chromosome aberrations (CABs) in brains and induces diabetic hallmarks such as hyperglycemia and small body size. We showed that in sgllRNAi neuroblasts CABs are largely produced by the genotoxic effect of the advanced glycation end products triggered by high glucose. As in sgllRNAi cells, part of PLP is still produced by PDXK activity, these data suggest that PLP dosage need to be tightly regulated to guarantee glucose homeostasis and DNA integrity.


Asunto(s)
Drosophila melanogaster/metabolismo , Piridoxal Quinasa/metabolismo , Fosfato de Piridoxal/biosíntesis , Piridoxaminafosfato Oxidasa/metabolismo , Animales , Aberraciones Cromosómicas , ADN/fisiología , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hiperglucemia/genética , Modelos Animales , Piridoxaminafosfato Oxidasa/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
11.
Biochem J ; 476(20): 3033-3052, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31657440

RESUMEN

6-NADH and 6-NADPH are strong inhibitors of several dehydrogenases that may form spontaneously from NAD(P)H. They are known to be oxidized to NAD(P)+ by mammalian renalase, an FAD-linked enzyme mainly present in heart and kidney, and by related bacterial enzymes. We partially purified an enzyme oxidizing 6-NADPH from rat liver, and, surprisingly, identified it as pyridoxamine-phosphate oxidase (PNPO). This was confirmed by the finding that recombinant mouse PNPO oxidized 6-NADH and 6-NADPH with catalytic efficiencies comparable to those observed with pyridoxine- and pyridoxamine-5'-phosphate. PNPOs from Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana also displayed 6-NAD(P)H oxidase activity, indicating that this 'side-activity' is conserved. Remarkably, 'pyridoxamine-phosphate oxidase-related proteins' (PNPO-RP) from Nostoc punctiforme, A. thaliana and the yeast S. cerevisiae (Ygr017w) were not detectably active on pyridox(am)ine-5'-P, but oxidized 6-NADH, 6-NADPH and 2-NADH suggesting that this may be their main catalytic function. Their specificity profiles were therefore similar to that of renalase. Inactivation of renalase and of PNPO in mammalian cells and of Ygr017w in yeasts led to the accumulation of a reduced form of 6-NADH, tentatively identified as 4,5,6-NADH3, which can also be produced in vitro by reduction of 6-NADH by glyceraldehyde-3-phosphate dehydrogenase or glucose-6-phosphate dehydrogenase. As 4,5,6-NADH3 is not a substrate for renalase, PNPO or PNPO-RP, its accumulation presumably reflects the block in the oxidation of 6-NADH. These findings indicate that two different classes of enzymes using either FAD (renalase) or FMN (PNPOs and PNPO-RPs) as a cofactor play an as yet unsuspected role in removing damaged forms of NAD(P).


Asunto(s)
Biocatálisis , NADPH Oxidasas/metabolismo , NAD/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Animales , Arabidopsis/enzimología , Dominio Catalítico , Escherichia coli/enzimología , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Hígado/enzimología , Ratones , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , NADPH Oxidasas/aislamiento & purificación , Nostoc/enzimología , Oxidación-Reducción , Piridoxaminafosfato Oxidasa/química , Ratas , Saccharomyces cerevisiae/enzimología , Transfección
12.
Plant Cell ; 28(2): 439-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26858304

RESUMEN

Vitamin B6 comprises a family of compounds that is essential for all organisms, most notable among which is the cofactor pyridoxal 5'-phosphate (PLP). Other forms of vitamin B6 include pyridoxamine 5'-phosphate (PMP), pyridoxine 5'-phosphate (PNP), and the corresponding nonphosphorylated derivatives. While plants can biosynthesize PLP de novo, they also have salvage pathways that serve to interconvert the different vitamers. The selective contribution of these various pathways to cellular vitamin B6 homeostasis in plants is not fully understood. Although biosynthesis de novo has been extensively characterized, the salvage pathways have received comparatively little attention in plants. Here, we show that the PMP/PNP oxidase PDX3 is essential for balancing B6 vitamer levels in Arabidopsis thaliana. In the absence of PDX3, growth and development are impaired and the metabolite profile is altered. Surprisingly, RNA sequencing reveals strong induction of stress-related genes in pdx3, particularly those associated with biotic stress that coincides with an increase in salicylic acid levels. Intriguingly, exogenous ammonium rescues the growth and developmental phenotype in line with a severe reduction in nitrate reductase activity that may be due to the overaccumulation of PMP in pdx3. Our analyses demonstrate an important link between vitamin B6 homeostasis and nitrogen metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrógeno/metabolismo , Fosfato de Piridoxal/análogos & derivados , Piridoxamina/análogos & derivados , Piridoxaminafosfato Oxidasa/metabolismo , Vitamina B 6/metabolismo , Compuestos de Amonio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Vías Biosintéticas , Homeostasis , Metaboloma , Modelos Biológicos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxamina/química , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidasa/genética , Reproducción , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Análisis de Secuencia de ARN , Vitamina B 6/química
13.
Anal Chem ; 89(17): 8892-8900, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28782931

RESUMEN

We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Epilepsia/diagnóstico , Piridoxaminafosfato Oxidasa/metabolismo , Espectrometría de Masas en Tándem/métodos , Adolescente , Adulto , Área Bajo la Curva , Estudios de Casos y Controles , Niño , Preescolar , Pruebas con Sangre Seca , Epilepsia/tratamiento farmacológico , Humanos , Lactante , Recién Nacido , Masculino , Fosfato de Piridoxal/sangre , Piridoxamina/análogos & derivados , Piridoxamina/sangre , Curva ROC , Vitamina B 6/química , Vitamina B 6/metabolismo , Vitamina B 6/uso terapéutico , Adulto Joven
14.
Acta Biochim Biophys Sin (Shanghai) ; 49(2): 186-192, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28039149

RESUMEN

Nɛ-lysine acetylation is one of the most abundant post-translational modifications in eukaryote and prokaryote. Protein acetylome of Escherichia coli has been screened using mass spectrometry (MS) technology, and many acetylated proteins have been identified, including the pyridoxine 5'-phosphate oxidase (EcPNPOx), but the biological roles played by lysine acetylation in EcPNPOx still remain unknown. In this study, EcPNPOx was firstly overexpressed and purified, and two acetylated lysine residues were identified by the subsequent liquid chromatography-tandem mass spectrometry analysis. Site-directed mutagenesis analysis demonstrated that acetylated lysine residues play important roles in the enzymatic activity and enzymatic properties of the protein. EcPNPOx could be non-enzymatically acetylated by acetyl-phosphate and deacetylated by CobB in vitro. Furthermore, enzymatic activities of acetylated and deacetylated EcPNPOx were compared in vitro, and results showed that acetylation led to a decrease of its enzymatic activity, which could be rescued by CobB deacetylation. Taken together, our data suggest that CobB modulates the enzymatic activity of EcPNPOx in vitro.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Piridoxaminafosfato Oxidasa/metabolismo , Acetilación , Secuencia de Aminoácidos , Western Blotting , Cromatografía Liquida , Pruebas de Enzimas/métodos , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Lisina/genética , Mutagénesis Sitio-Dirigida , Piridoxaminafosfato Oxidasa/genética , Homología de Secuencia de Aminoácido , Sirtuinas/metabolismo , Espectrometría de Masas en Tándem , Temperatura
15.
Brain ; 137(Pt 5): 1350-60, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24645144

RESUMEN

The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or pyridoxal 5'-phosphate and many of them showed residual enzyme activity. One sequence change (R116Q), predicted to affect flavin mononucleotide binding and binding of the two PNPO dimers, and with high residual activity was found in Groups (ii) and (iii). This sequence change has been reported in the 1000 Genomes project suggesting it could be a polymorphism but alternatively it could be a common mutation, perhaps responsible for the susceptibility locus for genetic generalized epilepsy on 17q21.32 (close to rs72823592). We believe the reduction in PNPO activity and B6-responsive epilepsy in the patients reported here indicates that it contributes to the pathogenesis of epilepsy.


Asunto(s)
Ambiente , Epilepsia/genética , Mutación/genética , Piridoxaminafosfato Oxidasa/genética , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Electroencefalografía , Epilepsia/terapia , Femenino , Células HeLa , Humanos , Lactante , Masculino , Mutagénesis Sitio-Dirigida/métodos , Fosfato de Piridoxal/uso terapéutico , Piridoxaminafosfato Oxidasa/metabolismo , Transfección , Adulto Joven
16.
Dev Med Child Neurol ; 56(5): 498-502, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24266778

RESUMEN

Pyridox(am)ine phosphate oxidase (PNPO) deficiency causes severe early infantile epileptic encephalopathy and has been characterized as responding to pyridoxal-5'-phosphate but not to pyridoxine. Two males with PNPO deficiency and novel PNPO mutations are reported and their clinical, metabolic, and video-electroencephalographic (EEG) findings described. The first child showed electro-clinical responses to pyridoxine and deterioration when pyridoxine was withheld. At last review, he has well-controlled epilepsy with pyridoxal-5'-phosphate monotherapy and an autism spectrum disorder. The second child had a perinatal middle cerebral artery infarct and a myoclonic encephalopathy. He failed to respond to pyridoxine but responded well to pyridoxal-5'-phosphate. At the age of 21 months he has global developmental delay and hemiparesis but is seizure-free with pyridoxal-5'-phosphate monotherapy. Plasma and cerebrospinal fluid pyridoxamine levels were increased in both children during treatment with pyridoxine or pyridoxal-5'-phosphate. These observations indicate that differential responses to pyridoxine and pyridoxal-5'-phosphate treatment cannot be relied upon to diagnose PNPO deficiency.


Asunto(s)
Encefalopatías Metabólicas , Hipoxia-Isquemia Encefálica , Fosfato de Piridoxal/uso terapéutico , Piridoxamina/sangre , Piridoxamina/líquido cefalorraquídeo , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones , Complejo Vitamínico B/uso terapéutico , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/fisiopatología , Niño , Preescolar , Electroencefalografía , Humanos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Piridoxaminafosfato Oxidasa/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/fisiopatología
17.
Protein Sci ; 33(2): e4900, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38284493

RESUMEN

Adequate levels of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6 , and its proper distribution in the body are essential for human health. The PLP recycling pathway plays a crucial role in these processes and its defects cause severe neurological diseases. The enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), whose catalytic action yields PLP, is one of the key players in this pathway. Mutations in the gene encoding PNPO are responsible for a severe form of neonatal epilepsy. Recently, PNPO has also been described as a potential target for chemotherapeutic agents. Our laboratory has highlighted the crucial role of PNPO in the regulation of PLP levels in the cell, which occurs via a feedback inhibition mechanism of the enzyme, exerted by binding of PLP at an allosteric site. Through docking analyses and site-directed mutagenesis experiments, here we identified the allosteric PLP binding site of human PNPO. This site is located in the same protein region as the allosteric site we previously identified in the Escherichia coli enzyme homologue. However, the identity and arrangement of the amino acid residues involved in PLP binding are completely different and resemble those of the active site of PLP-dependent enzymes. The identification of the PLP allosteric site of human PNPO paves the way for the rational design of enzyme inhibitors as potential anti-cancer compounds.


Asunto(s)
Oxidorreductasas , Piridoxaminafosfato Oxidasa , Humanos , Sitio Alostérico , Oxidorreductasas/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/genética , Piridoxaminafosfato Oxidasa/metabolismo
18.
Biochim Biophys Acta ; 1814(11): 1597-608, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21182989

RESUMEN

Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a "salvage pathway", which essentially involves two ubiquitous enzymes: an ATP-dependent pyridoxal kinase and an FMN-dependent pyridoxine 5'-phosphate oxidase. Once it is made, pyridoxal 5'-phosphate is targeted to the dozens of different apo-B(6) enzymes that are being synthesized in the cell. The mechanism and regulation of the salvage pathway and the mechanism of addition of pyridoxal 5'-phosphate to the apo-B(6)-enzymes are poorly understood and represent a very challenging research field. Pyridoxal kinase and pyridoxine 5'-phosphate oxidase play kinetic roles in regulating the level of pyridoxal 5'-phosphate formation. Deficiency of pyridoxal 5'-phosphate due to inborn defects of these enzymes seems to be involved in several neurological pathologies. In addition, inhibition of pyridoxal kinase activity by several pharmaceutical and natural compounds is known to lead to pyridoxal 5'-phosphate deficiency. Understanding the exact role of vitamin B(6) in these pathologies requires a better knowledge on the metabolism and homeostasis of the vitamin. This article summarizes the current knowledge on structural, kinetic and regulation features of the two enzymes involved in the PLP salvage pathway. We also discuss the proposal that newly formed PLP may be transferred from either enzyme to apo-B(6)-enzymes by direct channeling, an efficient, exclusive, and protected means of delivery of the highly reactive PLP. This new perspective may lead to novel and interesting findings, as well as serve as a model system for the study of macromolecular channeling. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.


Asunto(s)
Piridoxal Quinasa/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Vitamina B 6/metabolismo , Biocatálisis , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Piridoxal Quinasa/química , Piridoxaminafosfato Oxidasa/química , Vitamina B 6/biosíntesis
19.
Biochimie ; 183: 18-29, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33421502

RESUMEN

Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.


Asunto(s)
Encefalopatías Metabólicas , Hipoxia-Isquemia Encefálica , Errores Innatos del Metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Fosfato de Piridoxal , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones , Animales , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/metabolismo , Recién Nacido , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Piridoxaminafosfato Oxidasa/genética , Piridoxaminafosfato Oxidasa/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
20.
J Biol Chem ; 284(45): 30949-56, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19759001

RESUMEN

Mutations in pyridoxine 5'-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5'-phosphate oxidase catalyzes the oxidation of pyridoxine 5'-phosphate to pyridoxal 5'-phosphate, the active cofactor form of vitamin B(6) required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is approximately 850-fold less efficient than the wild-type enzyme due to an approximately 192-fold decrease in pyridoxine 5'-phosphate affinity and an approximately 4.5-fold decrease in catalytic activity. There is also an approximately 50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 A crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a beta-strand-loop-beta-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5'-phosphate oxidase mutations.


Asunto(s)
Epilepsia Benigna Neonatal/enzimología , Piridoxaminafosfato Oxidasa/química , Piridoxaminafosfato Oxidasa/metabolismo , Sitios de Unión , Catálisis , Cristalización , Epilepsia Benigna Neonatal/genética , Mononucleótido de Flavina/química , Humanos , Cinética , Conformación Molecular , Mutación Missense , Unión Proteica , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/química , Piridoxaminafosfato Oxidasa/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA