Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.073
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 431-452, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750318

RESUMEN

The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.


Asunto(s)
Enfermedades Neuroinflamatorias , Neuroprotección , Humanos , Animales , Encéfalo , Proteínas del Sistema Complemento , Plasticidad Neuronal/fisiología , Microglía/fisiología
2.
Cell ; 186(9): 1819-1821, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116467

RESUMEN

Metabolic changes are essential for neurodevelopmental processes. However, little is known about how and when neuronal metabolic remodeling occurs to promote functional circuits. In this issue of Cell, Knaus et al. demonstrate that a temporary perinatal shift in metabolites and lipids is crucial for cortical neurons' survival and wiring.


Asunto(s)
Neuronas , Supervivencia Celular , Plasticidad Neuronal/fisiología , Neuronas/fisiología
3.
Cell ; 186(3): 543-559.e19, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669484

RESUMEN

Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.


Asunto(s)
Región CA1 Hipocampal , Hipocampo , Ratones , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje/fisiología , Neuronas , Transmisión Sináptica/fisiología , Mamíferos
4.
Cell ; 185(1): 62-76, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963057

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Trastornos Mentales/metabolismo , Plasticidad Neuronal/fisiología , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Homeostasis/fisiología , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Neurogénesis/fisiología , Neuropéptidos/genética , Psicotrópicos/farmacología , Psicotrópicos/uso terapéutico , Transmisión Sináptica/efectos de los fármacos , Resultado del Tratamiento
5.
Cell ; 182(2): 388-403.e15, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32615087

RESUMEN

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.


Asunto(s)
Matriz Extracelular/metabolismo , Microglía/fisiología , Plasticidad Neuronal/fisiología , Envejecimiento , Animales , Miedo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal
6.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32492405

RESUMEN

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Potenciales de Acción/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Femenino , Células HEK293 , Homeostasis/fisiología , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Antígeno Ventral Neuro-Oncológico , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
7.
Cell ; 177(7): 1858-1872.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31080067

RESUMEN

Decision making is often driven by the subjective value of available options, a value which is formed through experience. To support this fundamental behavior, the brain must encode and maintain the subjective value. To investigate the area specificity and plasticity of value coding, we trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with cellular resolution. History- and value-related signals were widespread across areas, but their strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely encoded history- and value-related signals with persistent population activity patterns across trials. This unique encoding of RSC emerged during task learning with a strong increase in more distant history signals. Acute inactivation of RSC selectively impaired the reward-history-based behavioral strategy. Our results indicate that RSC flexibly changes its history coding and persistently encodes value-related signals to support adaptive behaviors.


Asunto(s)
Conducta Animal/fisiología , Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Ratones , Ratones Transgénicos
8.
Cell ; 176(1-2): 73-84.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30612742

RESUMEN

Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Citoesqueleto/metabolismo , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Femenino , Masculino , Mitocondrias/fisiología , Plasticidad Neuronal/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
9.
Cell ; 176(5): 1174-1189.e16, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686580

RESUMEN

The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.


Asunto(s)
Caenorhabditis elegans/fisiología , Sinapsis Eléctricas/metabolismo , Plasticidad Neuronal/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Conectoma/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Larva/metabolismo , Neuronas/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
10.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794775

RESUMEN

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Receptores CCR5/metabolismo , Accidente Cerebrovascular/terapia , Anciano , Anciano de 80 o más Años , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Corteza Motora/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores CCR5/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos
11.
Cell ; 172(4): 683-695.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425490

RESUMEN

Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning.


Asunto(s)
Señalización del Calcio/fisiología , Interneuronas/metabolismo , Aprendizaje/fisiología , Red Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Animales , Interneuronas/citología , Ratones , Ratones Transgénicos , N-Metilaspartato/metabolismo , Red Nerviosa/citología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
12.
Annu Rev Cell Dev Biol ; 35: 543-566, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283381

RESUMEN

Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.


Asunto(s)
Aparato de Golgi/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas/fisiología , Animales , Compartimento Celular/fisiología , Membrana Celular/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
13.
Annu Rev Neurosci ; 47(1): 187-209, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663090

RESUMEN

The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.


Asunto(s)
Hipocampo , Aprendizaje , Plasticidad Neuronal , Hipocampo/fisiología , Animales , Aprendizaje/fisiología , Humanos , Plasticidad Neuronal/fisiología
14.
Annu Rev Neurosci ; 47(1): 41-61, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38382543

RESUMEN

To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.


Asunto(s)
Encéfalo , Homeostasis , Red Nerviosa , Plasticidad Neuronal , Homeostasis/fisiología , Animales , Humanos , Plasticidad Neuronal/fisiología , Red Nerviosa/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Neocórtex/fisiología
15.
Annu Rev Neurosci ; 47(1): 63-83, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38424473

RESUMEN

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Movimiento/fisiología , Distonía/terapia , Distonía/fisiopatología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología
16.
Immunity ; 56(5): 914-925, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37163992

RESUMEN

Cytokines are key messengers by which immune cells communicate, and they drive many physiological processes, including immune and inflammatory responses. Early discoveries demonstrated that cytokines, such as the interleukin family members and TNF-α, regulate synaptic scaling and plasticity. Still, we continue to learn more about how these traditional immune system cytokines affect neuronal structure and function. Different cytokines shape synaptic function on multiple levels ranging from fine-tuning neurotransmission, to regulating synapse number, to impacting global neuronal networks and complex behavior. These recent findings have cultivated an exciting and growing field centered on the importance of immune system cytokines for regulating synapse and neural network structure and function. Here, we highlight the latest findings related to cytokines in the central nervous system and their regulation of synapse structure and function. Moreover, we explore how these mechanisms are becoming increasingly important to consider in diseases-especially those with a large neuroinflammatory component.


Asunto(s)
Sistema Nervioso Central , Citocinas , Sistema Nervioso Central/fisiología , Sinapsis , Neuronas/fisiología , Transmisión Sináptica , Plasticidad Neuronal/fisiología
17.
Annu Rev Neurosci ; 45: 471-489, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803589

RESUMEN

Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.


Asunto(s)
Plasticidad Neuronal , Privación Sensorial , Encéfalo , Humanos , Plasticidad Neuronal/fisiología , Privación Sensorial/fisiología , Visión Ocular
18.
Annu Rev Neurosci ; 45: 151-175, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803588

RESUMEN

The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Corteza Cerebelosa/fisiología , Cerebelo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología
19.
Annu Rev Neurosci ; 45: 581-601, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35508195

RESUMEN

Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.


Asunto(s)
Antidepresivos , Depresión , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Plasticidad Neuronal/fisiología , Neuronas , Sinapsis/fisiología , Transmisión Sináptica/fisiología
20.
Nature ; 630(8017): 677-685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839962

RESUMEN

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Asunto(s)
Analgésicos Opioides , Vaina de Mielina , Vías Nerviosas , Plasticidad Neuronal , Recompensa , Área Tegmental Ventral , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Morfina/farmacología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Optogenética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Linaje de la Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA