Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.034
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
2.
Cell ; 185(15): 2828-2839, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35643084

RESUMEN

As a major event in human civilization, wild plants were successfully domesticated to be crops, largely owing to continuing artificial selection. Here, we summarize new discoveries made during the past decade in crop domestication and breeding. The construction of crop genome maps and the functional characterization of numerous trait genes provide foundational information. Approaches to read, interpret, and write complex genetic information are being leveraged in many plants for highly efficient de novo or re-domestication. Understanding the underlying mechanisms of crop microevolution and applying the knowledge to agricultural productions will give possible solutions for future challenges in food security.


Asunto(s)
Domesticación , Fitomejoramiento , Mapeo Cromosómico , Productos Agrícolas/genética , Genómica , Humanos
3.
Cell ; 184(6): 1621-1635, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33581057

RESUMEN

Feeding the ever-growing population is a major challenge, especially in light of rapidly changing climate conditions. Genome editing is set to revolutionize plant breeding and could help secure the global food supply. Here, I review the development and application of genome editing tools in plants while highlighting newly developed techniques. I describe new plant breeding strategies based on genome editing and discuss their impact on crop production, with an emphasis on recent advancements in genome editing-based plant improvements that could not be achieved by conventional breeding. I also discuss challenges facing genome editing that must be overcome before realizing the full potential of this technology toward future crops and food production.


Asunto(s)
Agricultura , Productos Agrícolas/genética , Ingeniería Genética , Genoma de Planta , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
4.
Cell ; 184(5): 1133-1134, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667365

RESUMEN

The de novo domestication has the potential to rapidly capitalize on desirable traits of wild plants. In this issue of Cell, Yu et al. report a route of de novo domestication of an allotetraploid rice, heralding the creation of a novel staple food crop to support global food security.


Asunto(s)
Domesticación , Oryza , Productos Agrícolas/genética , Edición Génica , Oryza/genética
5.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539781

RESUMEN

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Asunto(s)
Productos Agrícolas/genética , Domesticación , Oryza/genética , Sistemas CRISPR-Cas , Seguridad Alimentaria , Edición Génica , Variación Genética , Genoma de Planta , Oryza/clasificación , Poliploidía
6.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553272

RESUMEN

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Asunto(s)
Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Variación Estructural del Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático del Citocromo P-450/genética , Ecotipo , Epistasis Genética , Frutas/genética , Duplicación de Gen , Genoma de Planta , Genotipo , Endogamia , Anotación de Secuencia Molecular , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
7.
Cell ; 171(2): 470-480.e8, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28919077

RESUMEN

Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.


Asunto(s)
Productos Agrícolas/genética , Edición Génica , Genoma de Planta , Sistemas CRISPR-Cas , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo
8.
Cell ; 167(2): 313-324, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716505

RESUMEN

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Productos Agrícolas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/fisiología , Proteínas Quinasas Activadas por AMP/genética , Cloroplastos/enzimología , Respuesta al Choque por Frío , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Sequías , Estrés del Retículo Endoplásmico , Metabolismo Energético , Abastecimiento de Alimentos , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Mitocondrias/enzimología , Presión Osmótica , Peroxisomas/enzimología , Proteínas Serina-Treonina Quinasas/genética , Salinidad , Transducción de Señal , Estrés Fisiológico/genética
9.
Nat Rev Genet ; 25(8): 563-577, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38378816

RESUMEN

Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.


Asunto(s)
Biodiversidad , Productos Agrícolas , Genoma de Planta , Productos Agrícolas/genética , Evolución Molecular , Fitomejoramiento/métodos , Variación Genética , Evolución Biológica
10.
Nat Rev Genet ; 25(9): 603-622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38658741

RESUMEN

Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas , Edición Génica , Genoma de Planta , Fitomejoramiento , Edición Génica/métodos , Fitomejoramiento/métodos , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética
11.
Cell ; 161(1): 56-66, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25815985

RESUMEN

Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented.


Asunto(s)
Abastecimiento de Alimentos , Ingeniería Genética , Fotosíntesis , Plantas/genética , Agricultura , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Plantas/metabolismo
12.
Nature ; 633(8031): 848-855, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143210

RESUMEN

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.


Asunto(s)
Aegilops , Pan , Productos Agrícolas , Evolución Molecular , Genoma de Planta , Triticum , Aegilops/genética , Alelos , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Domesticación , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Haplotipos/genética , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética , Poliploidía , Triticum/genética
13.
Nature ; 632(8026): 823-831, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885696

RESUMEN

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.


Asunto(s)
Biodiversidad , Productos Agrícolas , Variación Genética , Fenotipo , Fitomejoramiento , Triticum , Alelos , Productos Agrícolas/genética , Introgresión Genética , Variación Genética/genética , Genoma de Planta/genética , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Triticum/clasificación , Triticum/genética , Secuenciación Completa del Genoma , Filogenia , Estudios de Asociación Genética , Seguridad Alimentaria
14.
Nature ; 618(7964): 316-321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225981

RESUMEN

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Asunto(s)
Biodiversidad , Productos Agrícolas , Restauración y Remediación Ambiental , Aceite de Palma , Árboles , Bosques , Aceite de Palma/provisión & distribución , Árboles/fisiología , Agricultura/métodos , Naciones Unidas , Clima Tropical , Productos Agrícolas/provisión & distribución , Restauración y Remediación Ambiental/métodos
15.
Nature ; 615(7950): 73-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813959

RESUMEN

Avoiding excessive agricultural nitrogen (N) use without compromising yields has long been a priority for both research and government policy in China1,2. Although numerous rice-related strategies have been proposed3-5, few studies have assessed their impacts on national food self-sufficiency and environmental sustainability and fewer still have considered economic risks faced by millions of smallholders. Here we established an optimal N rate strategy based on maximizing either economic (ON) or ecological (EON) performance using new subregion-specific models. Using an extensive on-farm dataset, we then assessed the risk of yield losses among smallholder farmers and the challenges of implementing the optimal N rate strategy. We find that meeting national rice production targets in 2030 is possible while concurrently reducing nationwide N consumption by 10% (6-16%) and 27% (22-32%), mitigating reactive N (Nr) losses by 7% (3-13%) and 24% (19-28%) and increasing N-use efficiency by 30% (3-57%) and 36% (8-64%) for ON and EON, respectively. This study identifies and targets subregions with disproportionate environmental impacts and proposes N rate strategies to limit national Nr pollution below proposed environmental thresholds, without compromising soil N stocks or economic benefits for smallholders. Thereafter, the preferable N strategy is allocated to each region based on the trade-off between economic risk and environmental benefit. To facilitate the adoption of the annually revised subregional N rate strategy, several recommendations were provided, including a monitoring network, fertilization quotas and smallholder subsidies.


Asunto(s)
Agricultura , Productos Agrícolas , Ambientalismo , Nitrógeno , Oryza , Desarrollo Sostenible , Agricultura/economía , Agricultura/métodos , China , Fertilizantes/análisis , Fertilizantes/economía , Nitrógeno/análisis , Nitrógeno/economía , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Productos Agrícolas/economía , Productos Agrícolas/metabolismo , Productos Agrícolas/provisión & distribución , Ecología , Agricultores , Conjuntos de Datos como Asunto , Abastecimiento de Alimentos
16.
Nature ; 617(7962): 785-791, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165193

RESUMEN

Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.


Asunto(s)
Productos Agrícolas , Setaria (Planta) , Sorghum , Transcriptoma , Zea mays , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/genética , Sorghum/citología , Sorghum/genética , Transcriptoma/genética , Zea mays/citología , Zea mays/genética , Setaria (Planta)/citología , Setaria (Planta)/genética , Raíces de Plantas/citología , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN , Productos Agrícolas/citología , Productos Agrícolas/genética , Evolución Molecular
17.
Nature ; 617(7959): 118-124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100915

RESUMEN

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Asunto(s)
Biomasa , Brasinoesteroides , Grano Comestible , Transducción de Señal , Triticum , Alelos , Brasinoesteroides/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Eliminación de Gen , Genes de Plantas , Giberelinas/metabolismo , Fenotipo , Triticum/clasificación , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Proteínas de Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo
18.
Nature ; 615(7953): 652-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890232

RESUMEN

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Asunto(s)
Productos Agrícolas , Diploidia , Variación Genética , Genoma de Planta , Genómica , Fitomejoramiento , Proteínas de Plantas , Vicia faba , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Amplificación de Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Geografía , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinación Genética , Retroelementos/genética , Semillas/anatomía & histología , Semillas/genética , Vicia faba/anatomía & histología , Vicia faba/genética , Vicia faba/metabolismo
19.
Nature ; 613(7942): 77-84, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600068

RESUMEN

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Asunto(s)
Producción de Cultivos , Productos Agrícolas , Contaminación Ambiental , Nitrógeno , Suelo , Humanos , Análisis Costo-Beneficio , Ecosistema , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/química , Contaminación Ambiental/economía , Contaminación Ambiental/prevención & control , Producción de Cultivos/economía , Producción de Cultivos/métodos , Producción de Cultivos/tendencias
20.
Annu Rev Genet ; 54: 287-307, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32870731

RESUMEN

Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.


Asunto(s)
Productos Agrícolas/genética , Epistasis Genética/genética , Variación Genética/genética , Sitios de Carácter Cuantitativo/genética , Animales , Domesticación , Edición Génica/métodos , Genoma de Planta/genética , Genómica/métodos , Humanos , Fitomejoramiento/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA