Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Pathol ; 194(8): 1581-1591, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38705382

RESUMEN

Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor ß-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor ß (TGF-ß), TGF-ß1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-ß1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-ß1-neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGF-ß1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-ß1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-ß1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-ß in melanoma.


Asunto(s)
Proliferación Celular , Proteínas de Unión a TGF-beta Latente , Melanoma , Proteína Quinasa 7 Activada por Mitógenos , Factor de Crecimiento Transformador beta1 , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Melanoma/tratamiento farmacológico , Humanos , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Animales , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Theriogenology ; 226: 335-342, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959844

RESUMEN

Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.


Asunto(s)
Meiosis , Proteína Quinasa 7 Activada por Mitógenos , Oocitos , Huso Acromático , Animales , Oocitos/fisiología , Meiosis/fisiología , Ratones , Huso Acromático/fisiología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Femenino
3.
Braz. j. med. biol. res ; 50(8): e5891, 2017. graf
Artículo en Inglés | LILACS | ID: biblio-888985

RESUMEN

This study aimed to investigate the function and mechanism of microRNA-143 (miR-143) in the occurrence and development of breast cancer (BC). A total of 30 BC tissues, 30 corresponding noncancerous tissues, and 10 normal control (NC) breast tissues were obtained to detect the levels of miR-143, extracellular signal-regulated kinase 5 (ERK5) and mitogen-activated protein 3 kinase 7 (MAP3K7) using RT-qPCR, western blotting or immunohistochemistry. The correlation of miR-143 with ERK5 or MAP3K7 was evaluated using Pearson correlation analysis. MCF-7 cells were transiently transfected with miR-143 mimic, miR-143 inhibitor, miR-143 mimic/inhibitor + si-ERK5, si-MAP3K7 or si-cyclin D1. Then, cell growth was evaluated by MTT assay and the expressions of phospho-ERK5 (p-ERK5), ERK5, p-MAP3K7, MAP3K7 and cyclin D1 were detected by western blotting. Results showed that, compared with noncancerous tissues or NC breast tissues, miR-143 level was decreased, while p-ERK5, ERK5, p-MAP3K7 and MAP3K7 expressions were increased in BC tissues (all P<0.01). The miR-143 level was negatively correlated with the mRNA level of ERK5 or MAP3K7 (r=-4.231 or r=-4.280, P<0.01). In addition, up-regulated miR-143 significantly decreased the expressions of p-ERK5, ERK5, p-MAP3K7, MAP3K7 and cyclin D1 (all P<0.01), as well as cell viability in MCF-7 cells (all P<0.05) while the effect of down-regulated miR-143 was the opposite. In conclusion, both ERK5 and MAP3K7 may be the target genes of miR-143. Increased expression of miR-143 can inhibit cell growth, which may be associated with ERK5 and MAP3K7 expressions in BC.


Asunto(s)
Humanos , Femenino , Neoplasias de la Mama/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Biomarcadores de Tumor/metabolismo , Western Blotting , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Proteína Quinasa 7 Activada por Mitógenos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA