Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 923-936.e11, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675499

RESUMEN

Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.


Asunto(s)
Uniones Estrechas/genética , Proteínas de la Zonula Occludens/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-2/genética , Animales , Sitios de Unión/genética , Adhesión Celular/genética , Polaridad Celular/genética , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/genética , Dominios PDZ/genética , Fosfoproteínas/genética , Fosforilación/genética , Unión Proteica/genética , Transducción de Señal/genética , Uniones Estrechas/metabolismo , Proteínas de la Zonula Occludens/química , Proteínas de la Zonula Occludens/ultraestructura , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/ultraestructura , Proteína de la Zonula Occludens-2/química , Proteína de la Zonula Occludens-2/ultraestructura , Dominios Homologos src/genética
2.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Nature ; 632(8025): 647-655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112699

RESUMEN

Biomolecular condensates enable cell compartmentalization by acting as membraneless organelles1. How cells control the interactions of condensates with other cellular structures such as membranes to drive morphological transitions remains poorly understood. We discovered that formation of a tight-junction belt, which is essential for sealing epithelial tissues, is driven by a wetting phenomenon that promotes the growth of a condensed ZO-1 layer2 around the apical membrane interface. Using temporal proximity proteomics in combination with imaging and thermodynamic theory, we found that the polarity protein PATJ mediates a transition of ZO-1 into a condensed surface layer that elongates around the apical interface. In line with the experimental observations, our theory of condensate growth shows that the speed of elongation depends on the binding affinity of ZO-1 to the apical interface and is constant. Here, using PATJ mutations, we show that ZO-1 interface binding is necessary and sufficient for tight-junction belt formation. Our results demonstrate how cells exploit the collective biophysical properties of protein condensates at membrane interfaces to shape mesoscale structures.


Asunto(s)
Condensados Biomoleculares , Membrana Celular , Uniones Estrechas , Humectabilidad , Animales , Perros , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Compartimento Celular , Membrana Celular/metabolismo , Membrana Celular/química , Epitelio , Células HEK293 , Células de Riñón Canino Madin Darby , Mutación , Unión Proteica , Termodinámica , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/química , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteómica
4.
J Cell Sci ; 137(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350674

RESUMEN

SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, ß-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).


Asunto(s)
Cadherinas , Células Epiteliales , Proteínas de la Membrana , Factores de Intercambio de Guanina Nucleótido Rho , Factores de Transcripción de la Familia Snail , Proteína de la Zonula Occludens-1 , Cadherinas/metabolismo , Cadherinas/genética , Humanos , Células Epiteliales/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Animales , Homólogo 1 de la Proteína Discs Large/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células de Riñón Canino Madin Darby , Uniones Estrechas/metabolismo , Perros , Transducción de Señal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Estabilidad Proteica , beta Catenina/metabolismo , beta Catenina/genética
5.
Proc Natl Acad Sci U S A ; 120(8): e2217561120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791108

RESUMEN

Tight junctions (TJs) are cell-adhesion structures responsible for the epithelial barrier. We reported that accumulation of cholesterol at the apical junctions is required for TJ formation [K. Shigetomi, Y. Ono, T. Inai, J. Ikenouchi, J. Cell Biol. 217, 2373-2381 (2018)]. However, it is unclear how cholesterol accumulates and informs TJ formation-and whether cholesterol enrichment precedes or follows the assembly of claudins in the first place. Here, we established an epithelial cell line (claudin-null cells) that lacks TJs by knocking out claudins. Despite the lack of TJs, cholesterol normally accumulated in the vicinity of the apical junctions. Assembly of claudins at TJs is thought to require binding to zonula occludens (ZO) proteins; however, a claudin mutant that cannot bind to ZO proteins still formed TJ strands. ZO proteins were however necessary for cholesterol accumulation at the apical junctions through their effect on the junctional actomyosin cytoskeleton. We propose that ZO proteins not only function as scaffolds for claudins but also promote TJ formation of cholesterol-rich membrane domains at apical junctions.


Asunto(s)
Fosfoproteínas , Uniones Estrechas , Proteínas de la Zonula Occludens/metabolismo , Uniones Estrechas/metabolismo , Fosfoproteínas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Claudinas/genética , Claudinas/metabolismo
6.
FASEB J ; 38(17): e70019, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39215561

RESUMEN

Non-proliferative diabetic retinopathy (NPDR) is the early stage of diabetic retinopathy (DR) and is a chronic oxidative stress-related ocular disease. Few treatments are approved for early DR. This study aimed to investigate the pathogenic mechanisms underlying the retinal micro-vasculopathy induced by diabetes and to explore an early potential for treating early DR in a mouse model. The mouse model of type 1 diabetes was established by intraperitoneal injection of streptozotocin (STZ, 180 mg/kg), which was used as the early DR model. The body weight and blood glucose mice were measured regularly; The retinal vascular leakage in the early DR mice was determined by whole-mount staining; Label-free quantitative proteomic analysis and bioinformatics were used to explore the target proteins and signaling pathways associated with the retinal tissues of early DR mice; To detect the effects of target protein on endothelial cell proliferation, migration, and tube formation, knockdown and overexpression of VEGF-B were performed in human retinal vascular endothelial cells (HRECs); Western blotting was used to detect the expression of target proteins in vitro and in vivo; Meanwhile, the therapeutic effect of VEGF-B on vascular leakage has also been evaluated in vitro and in vivo. The protein expressions of vascular endothelial growth factor (VEGF)-B and the Rho GTPases family member CDC42 were reduced in the retinal tissues of early DR. VEGF-B upregulated the expression of CDC42/ZO1/VE-cadherin and prevented hyperglycemia-induced vascular leakage in HRECs. Standard intravitreal VEGF-B injections improved the retinal vascular leakage and neurovascular response in early DR mice. Our findings demonstrated, for the first time, that in diabetes, the retinal vessels are damaged due to decreased VEGF-B expression through downregulation of CDC42/ZO1/VE-cadherin expression. Therefore, VEGF-B could be used as a novel therapy for early DR.


Asunto(s)
Antígenos CD , Cadherinas , Diabetes Mellitus Experimental , Retinopatía Diabética , Hiperglucemia , Proteína de Unión al GTP cdc42 , Animales , Proteína de Unión al GTP cdc42/metabolismo , Ratones , Cadherinas/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/prevención & control , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Hiperglucemia/metabolismo , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Transducción de Señal , Ratones Endogámicos C57BL , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Células Endoteliales/metabolismo , Retina/metabolismo , Retina/patología , Permeabilidad Capilar
7.
Proc Natl Acad Sci U S A ; 119(34): e2204618119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969745

RESUMEN

Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.


Asunto(s)
Fosfoproteínas , Serina , Animales , Ratones , Ocludina/genética , Ocludina/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Conformación Proteica en Hélice alfa , Serina/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
8.
Am J Physiol Cell Physiol ; 327(4): C913-C928, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39159387

RESUMEN

Confluent populations of the epithelial cell line, MDCK II, develop circumferential tight junctions joining adjacent cells to create a barrier to the paracellular movement of solutes and water. Treatment of MDCK II cell populations from the apical surface with 1 mM Na-caprate increased permeability to macromolecules (Leak Pathway) without increasing monolayer disruption or cell death. Graphical analysis of the apparent permeability versus solute Stokes radius for a size range of fluorescein-dextran species indicates apical 1 mM Na-caprate enhances Leak Pathway permeability by increasing the number of Leak Pathway openings without significantly affecting opening size. Na-caprate treatment did not alter the content of any tight junction protein examined. Treatment of MDCK II cell populations with apical 1 mM Na-caprate disrupted basal F-actin stress fibers and decreased the tortuosity of the tight junctions. Treatment of MDCK II cell populations with blebbistatin, a myosin ATPase inhibitor, alone had little effect on Leak Pathway permeability but synergistically increased Leak Pathway permeability when added with 1 mM Na-caprate. Na-caprate exhibited a similar ability to increase Leak Pathway permeability in wild-type MDCK II cell monolayers and ZO-1 knockdown MDCK II cell monolayers but an enhanced ability to increase Leak Pathway permeability in monolayers of TOCA-1 knockout MDCK II cells. These results demonstrate that Na-caprate increases MDCK II cell population Leak Pathway permeability by increasing the number of Leak Pathway openings. This action is likely mediated by alterations in F-actin organization, primarily involving disruption of basal F-actin stress fibers.NEW & NOTEWORTHY This study determines the underlying change in the openings in the epithelial tight junction permeability barrier structure that leads to a change in the paracellular permeability to macromolecules (the Leak Pathway) and connects this to disruption of specific F-actin structures within the cells. It provides important and novel insights into how tight junction permeability to macromolecules is modulated by specific changes to cellular and tight junction composition/organization.


Asunto(s)
Actinas , Células Epiteliales , Uniones Estrechas , Perros , Animales , Actinas/metabolismo , Células de Riñón Canino Madin Darby , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Citoesqueleto de Actina/metabolismo
9.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031471

RESUMEN

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Asunto(s)
Hipoxia de la Célula , Proteínas de Uniones Estrechas , Uniones Estrechas , Urotelio , Humanos , Urotelio/metabolismo , Urotelio/patología , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/genética , Línea Celular , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Impedancia Eléctrica , Regulación de la Expresión Génica
10.
J Med Virol ; 96(7): e29783, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965890

RESUMEN

Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.


Asunto(s)
COVID-19 , Mucosa Intestinal , SARS-CoV-2 , Uniones Estrechas , Replicación Viral , Humanos , SARS-CoV-2/patogenicidad , Células CACO-2 , COVID-19/virología , COVID-19/patología , Mucosa Intestinal/virología , Mucosa Intestinal/patología , Uniones Estrechas/virología , Alanina/análogos & derivados , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Antivirales/farmacología , Células HT29 , Ocludina/metabolismo , Ocludina/genética , Adenosina Monofosfato/análogos & derivados
11.
Arch Biochem Biophys ; 758: 110075, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942107

RESUMEN

An exceptional expression of claudins (CLDNs), tight junction (TJ) proteins, is observed in various solid cancer tissues. However, the pathophysiological roles of CLDNs have not been clarified in detail. CLDN14 is highly expressed in human colorectal cancer (CRC) tissues and cultured cancer epithelial cells. We found CLDN14 silencing decreased cell viability without affecting spheroid size in the three-dimensional (3D) spheroid model of DLD-1 cells derived from human CRC. Mitochondria activity and oxidative stress level were reduced by CLDN14 silencing. Furthermore, CLDN14 silencing decreased the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target antioxidative genes. CLDN14 was colocalized with ZO-1, a scaffolding protein in the TJ. CLDN14 silencing induced the disruption of TJ barrier such as the reduction of transepithelial electrical resistance and elevation of fluxes of small molecules including glucose in two-dimensional (2D) cultured model,. The depletion of glucose induced the elevation of ROS generation, mitochondria activity, and Nrf2 expression. These results suggest that CLDN14 increases Nrf2 expression in spheroids mediated via the formation of paracellular barrier to glucose. The cytotoxicities of doxorubicin, an anthracycline anticancer drug, and oxaliplatin, a platinum-based agent, were augmented by an Nrf2 activator in 2D cultured cells. The anticancer drug-induced toxicity was enhanced by CLDN14 silencing in 3D spheroids. We suggest that CLDN14 may potentiate chemoresistance mediated by the suppression of paracellular glucose permeability and activation of the Nrf2 signaling pathway in CRC cells.


Asunto(s)
Claudinas , Neoplasias Colorrectales , Regulación hacia Abajo , Resistencia a Antineoplásicos , Silenciador del Gen , Factor 2 Relacionado con NF-E2 , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Claudinas/metabolismo , Claudinas/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/efectos de los fármacos , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
12.
PLoS Genet ; 17(11): e1009894, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748546

RESUMEN

The generation of a diversity of photoreceptor (PR) subtypes with different spectral sensitivities is essential for color vision in animals. In the Drosophila eye, the Hippo pathway has been implicated in blue- and green-sensitive PR subtype fate specification. Specifically, Hippo pathway activation promotes green-sensitive PR fate at the expense of blue-sensitive PRs. Here, using a sensitized triple heterozygote-based genetic screening approach, we report the identification of the single Drosophila zonula occludens-1 (ZO-1) protein Polychaetoid (Pyd) as a new regulator of the Hippo pathway during the blue- and green-sensitive PR subtype binary fate choice. We demonstrate that Pyd acts upstream of the core components and the upstream regulator Pez in the Hippo pathway. Furthermore, We found that Pyd represses the activity of Su(dx), a E3 ligase that negatively regulates Pez and can physically interact with Pyd, during PR subtype fate specification. Together, our results identify a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Proteínas de Drosophila/genética , Heterocigoto , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética
13.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759536

RESUMEN

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Asunto(s)
Cromo , Colon , Mucina 2 , Níquel , Animales , Cromo/toxicidad , Níquel/toxicidad , Ratones , Colon/efectos de los fármacos , Colon/patología , Mucina 2/genética , Mucina 2/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Perfilación de la Expresión Génica , Masculino , Digestión/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Transcriptoma/efectos de los fármacos , Ocludina/metabolismo , Ocludina/genética , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología
14.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337254

RESUMEN

The integrity of the blood-labyrinth barrier (BLB) is essential for inner ear homeostasis, regulating the ionic composition of endolymph and perilymph and preventing harmful substance entry. Endothelial hyperpermeability, central in inflammatory and immune responses, is managed through complex intercellular communication and molecular signaling pathways. Recent studies link BLB permeability dysregulation to auditory pathologies like acoustic trauma, autoimmune inner ear diseases, and presbycusis. Polymorphonuclear granulocytes (PMNs), or neutrophils, significantly modulate vascular permeability, impacting endothelial barrier properties. Neutrophil extracellular traps (NETs) are involved in diseases with autoimmune and autoinflammatory bases. The present study evaluated the impact of NETs on a BLB cellular model using a Transwell® setup. Our findings revealed a concentration-dependent impact of NETs on human inner ear-derived endothelial cells. In particular, endothelial permeability markers increased, as indicated by reduced transepithelial electrical resistance, enhanced dextran permeability, and downregulated junctional gene expression (ZO1, OCL, and CDH5). Changes in cytoskeletal architecture were also observed. These preliminary results pave the way for further research into the potential involvement of NETs in BLB impairment and implications for auditory disorders.


Asunto(s)
Cadherinas , Permeabilidad Capilar , Oído Interno , Células Endoteliales , Trampas Extracelulares , Neutrófilos , Humanos , Trampas Extracelulares/metabolismo , Oído Interno/metabolismo , Neutrófilos/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ocludina/metabolismo , Ocludina/genética , Antígenos CD/metabolismo , Antígenos CD/genética
15.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201665

RESUMEN

Chronic low-grade inflammation (CLGI) is associated with obesity and is one of its pathogenetic mechanisms. Lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, is the principal cause of CLGI. Studies have found that capsaicin significantly reduces the relative abundance of LPS-producing bacteria. In the present study, TRPV1-knockout (TRPV1-/-) C57BL/6J mice and the intestinal epithelial cell line Caco-2 (TRPV1-/-) were used as models to determine the effect of capsaicin on CLGI and elucidate the mechanism by which it mediates weight loss in vivo and in vitro. We found that the intragastric administration of capsaicin significantly blunted increases in body weight, food intake, blood lipid, and blood glucose in TRPV1-/- mice fed a high-fat diet, suggesting an anti-obesity effect of capsaicin. Capsaicin reduced LPS levels in the intestine by reducing the relative abundance of Proteobacteria such as Helicobacter, Desulfovibrio, and Sutterella. Toll-like receptor 4 (TLR4) levels decreased following decreases in LPS levels. Then, the local inflammation of the intestine was reduced by reducing the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 mediated by TLR4. Attenuating local intestinal inflammation led to the increased expression of tight junction proteins zonula occludens 1 (ZO-1) and occludin and the restoration of the intestinal barrier function. Capsaicin increased the expression of ZO-1 and occludin at the transcriptional and translational levels, thereby increasing trans-endothelial electrical resistance and restoring intestinal barrier function. The restoration of intestinal barrier function decreases intestinal permeability, which reduces the concentration of LPS entering the circulation, and reduced endotoxemia leads to decreased serum concentrations of inflammatory cytokines such as TNF-α and IL-6, thereby attenuating CLGI. This study sheds light on the anti-obesity effect of capsaicin and its mechanism by reducing CLGI, increasing our understanding of the anti-obesity effects of capsaicin. It has been confirmed that capsaicin can stimulate the expression of intestinal transmembrane protein ZO-1 and cytoplasmic protein occludin, increase the trans-epithelial electrical resistance value, and repair intestinal barrier function.


Asunto(s)
Capsaicina , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Obesidad , Canales Catiónicos TRPV , Receptor Toll-Like 4 , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Capsaicina/farmacología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Humanos , Ratones , Receptor Toll-Like 4/metabolismo , Células CACO-2 , Ratones Noqueados , Dieta Alta en Grasa/efectos adversos , Masculino , Ocludina/metabolismo , Ocludina/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
16.
J Sci Food Agric ; 104(10): 5816-5825, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38406876

RESUMEN

BACKGROUND: The strong connection between gut microbes and human health has been confirmed by an increasing number of studies. Although probiotics have been found to relieve ulcerative colitis, the mechanism varies by the species involved. In this study, the physiological, immune and pathological factors of mice were measured and shotgun metagenomic sequencing was conducted to investigate the potential mechanisms in preventing ulcerative colitis. RESULTS: The results demonstrated that ingestion of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 significantly alleviated ulcerative colitis induced by dextran sulfate sodium (DSS), as evidenced by the increase in body weight, food intake, water intake and colon length as well as the decrease in disease activity index, histopathological score and inflammatory factor. Both strains not only improved intestinal mucosa by increasing mucin-2 and zonula occludens-1, but also improved the immune system response by elevating interleukin-10 levels and decreasing the levels of interleukin-1ß, interleukin-6, tumor necrosis factor-α and interferon-γ. Moreover, L. fermentum GLF-217 and L. plantarum FLP-215 play a role in preventing DSS-induced colitis by regulating the structure of gut microbiota and promoting the formation of short-chain fatty acids. CONCLUSIONS: This study may provide a reference for the prevention strategy of ulcerative colitis. © 2024 Society of Chemical Industry.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Animales , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/prevención & control , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Ratones , Probióticos/administración & dosificación , Probióticos/farmacología , Masculino , Humanos , Sulfato de Dextran/efectos adversos , Colon/microbiología , Colon/inmunología , Colon/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Mucina 2/metabolismo , Mucina 2/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Interferón gamma/metabolismo , Interferón gamma/genética , Interferón gamma/inmunología , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Modelos Animales de Enfermedad
17.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4510-4520, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307787

RESUMEN

This study aims to explore the improvement effect of Sijunzi Decoction on intestinal barrier in diabetic mice. A type 2 diabetes mellitus(T2DM) model was established in C57BL/6J mice by feeding them with high-sugar and high-fat diet combined with streptozotocin(STZ). The T2DM mice were randomly divided into a control group, a T2DM group, a donepezil(DON) group, a rosiglitazone(RGZ) group, and Sijunzi Decoction groups(7. 5, 15, and 30 g·kg~(-1)), and orally administered for six weeks. The body weight and fasting plasma glucose(FBG) of mice were recorded. Fasting plasma insulin(FINS) and insulin resistance index(HOMA-IR) were observed to assess insulin resistance(IR). Intestinal flora and levels of serotonin(5-HT), lipopolysaccharide(LPS), and short-chain fatty acids(SCFAs) in serum were analyzed. Changes in colonic structure and tight junction proteins occludin, claudin-1,and ZO-1 were observed through HE staining and immunohistochemistry. Spontaneous alternation test was conducted to observe the effect on spatial memory ability. Compared with the results in the control group, FBG and HOMA-IR in the T2DM group were significantly increased(P< 0. 01); species richness index(Sobs index), Shannon diversity index(Shannon index), and species abundance estimate index(Chao index) were decreased; LPS was significantly increased(P< 0. 001), while the levels of 5-HT,SCFAs, occludin, claudin-1, and ZO-1 were significantly decreased(P< 0. 01), indicating impaired colonic barrier function;spontaneous alternation accuracy was significantly decreased(P<0. 05). After 6 weeks of Sijunzi Decoction treatment, compared with the results in the T2DM group, FBG and HOMA-IR in the Sijunzi Decoction 15 g·kg~(-1) group were significantly decreased(P<0. 01);Sobs index, Shannon index, and Chao index were increased; LPS was significantly decreased(P<0. 01), while the levels of 5-HT,SCFAs, occludin, claudin-1, and ZO-1 were significantly increased(P< 0. 05), indicating improved colonic barrier function;spontaneous alternation accuracy was increased(P<0. 001). In conclusion, Sijunzi Decoction has the effect of improving intestinal barrier in diabetic mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Ratones Endogámicos C57BL , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Resistencia a la Insulina , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo , Humanos , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética
18.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4499-4509, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39307786

RESUMEN

This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polvos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Humanos , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Ocludina/metabolismo , Ocludina/genética , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Triglicéridos/metabolismo
19.
J Biol Chem ; 298(4): 101797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259394

RESUMEN

Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN-ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN-ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.


Asunto(s)
Proteínas del Citoesqueleto , Uniones Estrechas , Proteína de la Zonula Occludens-1 , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
20.
J Membr Biol ; 256(1): 51-61, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35737002

RESUMEN

Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.


Asunto(s)
Claudinas , Oocitos , Animales , Humanos , Claudinas/genética , Claudinas/metabolismo , Xenopus laevis/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Oocitos/metabolismo , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA