Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.497
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35366416

RESUMEN

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Asunto(s)
Pueblo Asiatico , ADN Antiguo , Genética de Población , Pueblo Asiatico/genética , Genoma , Historia Antigua , Migración Humana/historia , Humanos , Azufre
2.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995520

RESUMEN

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Asunto(s)
Dermatoglifia , Dedos/crecimiento & desarrollo , Organogénesis/genética , Polimorfismo de Nucleótido Simple , Dedos del Pie/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Pueblo Asiatico/genética , Tipificación del Cuerpo/genética , Niño , Estudios de Cohortes , Femenino , Miembro Anterior/crecimiento & desarrollo , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
3.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33338421

RESUMEN

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Asunto(s)
Infecciones por Flavivirus/genética , Flavivirus/fisiología , Proteínas de la Membrana/metabolismo , Animales , Pueblo Asiatico/genética , Autofagia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Sistemas CRISPR-Cas , Línea Celular , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2/fisiología , Replicación Viral , Virus de la Fiebre Amarilla/fisiología , Virus Zika/fisiología
4.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888493

RESUMEN

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Asunto(s)
Pueblo Asiatico/genética , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Genética , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Humanos , Interleucina-7/genética , Fenotipo
5.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
6.
Cell ; 179(3): 729-735.e10, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31495572

RESUMEN

We report an ancient genome from the Indus Valley Civilization (IVC). The individual we sequenced fits as a mixture of people related to ancient Iranians (the largest component) and Southeast Asian hunter-gatherers, a unique profile that matches ancient DNA from 11 genetic outliers from sites in Iran and Turkmenistan in cultural communication with the IVC. These individuals had little if any Steppe pastoralist-derived ancestry, showing that it was not ubiquitous in northwest South Asia during the IVC as it is today. The Iranian-related ancestry in the IVC derives from a lineage leading to early Iranian farmers, herders, and hunter-gatherers before their ancestors separated, contradicting the hypothesis that the shared ancestry between early Iranians and South Asians reflects a large-scale spread of western Iranian farmers east. Instead, sampled ancient genomes from the Iranian plateau and IVC descend from different groups of hunter-gatherers who began farming without being connected by substantial movement of people.


Asunto(s)
ADN Antiguo/química , Genoma Humano , Migración Humana , Linaje , Población/genética , Pueblo Asiatico/genética , Evolución Molecular , Humanos , Irán , Pakistán
7.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626772

RESUMEN

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Asunto(s)
Genética de Población , Genoma Humano/genética , Selección Genética , Secuenciación Completa del Genoma , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Malasia/epidemiología , Masculino , Polimorfismo de Nucleótido Simple/genética , Singapur/epidemiología
8.
Cell ; 177(4): 1010-1021.e32, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30981557

RESUMEN

Genome sequences are known for two archaic hominins-Neanderthals and Denisovans-which interbred with anatomically modern humans as they dispersed out of Africa. We identified high-confidence archaic haplotypes in 161 new genomes spanning 14 island groups in Island Southeast Asia and New Guinea and found large stretches of DNA that are inconsistent with a single introgressing Denisovan origin. Instead, modern Papuans carry hundreds of gene variants from two deeply divergent Denisovan lineages that separated over 350 thousand years ago. Spatial and temporal structure among these lineages suggest that introgression from one of these Denisovan groups predominantly took place east of the Wallace line and continued until near the end of the Pleistocene. A third Denisovan lineage occurs in modern East Asians. This regional mosaic suggests considerable complexity in archaic contact, with modern humans interbreeding with multiple Denisovan groups that were geographically isolated from each other over deep evolutionary time.


Asunto(s)
Introgresión Genética/genética , Haplotipos/genética , Hominidae/genética , Animales , Pueblo Asiatico/genética , Evolución Biológica , Flujo Génico , Variación Genética/genética , Genoma Humano/genética , Humanos , Indonesia , Hombre de Neandertal/genética , Oceanía
9.
Cell ; 173(1): 53-61.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551270

RESUMEN

Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan. VIDEO ABSTRACT.


Asunto(s)
Genoma Humano , Animales , Pueblo Asiatico/genética , Humanos , Hombre de Neandertal/genética , Selección Genética , Secuenciación del Exoma
10.
Cell ; 175(2): 347-359.e14, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290141

RESUMEN

We analyze whole-genome sequencing data from 141,431 Chinese women generated for non-invasive prenatal testing (NIPT). We use these data to characterize the population genetic structure and to investigate genetic associations with maternal and infectious traits. We show that the present day distribution of alleles is a function of both ancient migration and very recent population movements. We reveal novel phenotype-genotype associations, including several replicated associations with height and BMI, an association between maternal age and EMB, and between twin pregnancy and NRG1. Finally, we identify a unique pattern of circulating viral DNA in plasma with high prevalence of hepatitis B and other clinically relevant maternal infections. A GWAS for viral infections identifies an exceptionally strong association between integrated herpesvirus 6 and MOV10L1, which affects piwi-interacting RNA (piRNA) processing and PIWI protein function. These findings demonstrate the great value and potential of accumulating NIPT data for worldwide medical and genetic analyses.


Asunto(s)
Pueblo Asiatico/genética , Diagnóstico Prenatal/métodos , Adulto , Alelos , China , ADN/genética , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Migración Humana , Humanos , Embarazo , Análisis de Secuencia de ADN
11.
Nature ; 609(7927): 552-559, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045292

RESUMEN

Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.


Asunto(s)
Población Negra , Neoplasias de la Próstata , África/etnología , África del Sur del Sahara/etnología , Pueblo Asiatico/genética , Población Negra/genética , Proteínas Portadoras/genética , China/etnología , Etnicidad/genética , Europa (Continente)/etnología , Humanos , Masculino , Mutación , Proteínas Nucleares/genética , Coactivador 2 del Receptor Nuclear/genética , Neoplasias de la Próstata/genética , ARN Helicasas/genética , ARN Largo no Codificante/genética
12.
Am J Hum Genet ; 111(10): 2117-2128, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39191255

RESUMEN

Multi-ancestry genome-wide association studies (GWASs) have highlighted the existence of variants with ancestry-specific effect sizes. Understanding where and why these ancestry-specific effects occur is fundamental to understanding the genetic basis of human diseases and complex traits. Here, we characterized genes differentially expressed across ancestries (ancDE genes) at the cell-type level by leveraging single-cell RNA-sequencing data in peripheral blood mononuclear cells for 21 individuals with East Asian (EAS) ancestry and 23 individuals with European (EUR) ancestry (172,385 cells); then, we tested whether variants surrounding those genes were enriched in disease variants with ancestry-specific effect sizes by leveraging ancestry-matched GWASs of 31 diseases and complex traits (average n ∼ 90,000 and ∼ 267,000 in EAS and EUR, respectively). We observed that ancDE genes tended to be cell-type specific and enriched in genes interacting with the environment and in variants with ancestry-specific disease effect sizes, which suggests cell-type-specific, gene-by-environment interactions shared between regulatory and disease architectures. Finally, we illustrated how different environments might have led to ancestry-specific myeloid cell leukemia 1 (MCL1) expression in B cells and ancestry-specific allele effect sizes in lymphocyte count GWASs for variants surrounding MCL1. Our results imply that large single-cell and GWAS datasets from diverse ancestries are required to improve our understanding of human diseases.


Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Población Blanca , Humanos , Población Blanca/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Pueblo Asiatico/genética , Leucocitos Mononucleares/metabolismo , Análisis de la Célula Individual , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Regulación de la Expresión Génica
13.
Hum Mol Genet ; 33(11): 1015-1019, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38538568

RESUMEN

The Northeastern region of India is considered a gateway for modern humans' dispersal throughout Asia. This region is a mixture of various ethnic and indigenous populations amalgamating multiple ancestries. One reason for such amalgamation is that, South Asia experienced multiple historic migrations from various parts of the world. A few examples explored genetically are Jews, Parsis and Siddis. Ahom is a dynasty that historically migrated to India during the 12th century. However, this putative migration has not been studied genetically at high resolution. Therefore, to validate this historical evidence, we genotyped autosomal data of the Modern Ahom population residing in seven sister states of India. Principal Component and Admixture analyses haave suggested a substantial admixture of the Ahom population with the local Tibeto-Burman populations. Moreover, the haplotype-based analysis has linked these Ahom individuals mainly with the Kusunda (a language isolated from Nepal) and Khasi (an Austroasiatic population of Meghalaya). Such unexpected presence of widespread population affinities suggests that Ahom mixed and assimilated a wide variety of Trans-Himalayan populations inhabiting this region after the migration. In summary, we observed a significant deviation of Ahom from their ancestral homeland (Thailand) and extensive admixture and assimilation with the local South Asian populations.


Asunto(s)
Etnicidad , Genética de Población , Haplotipos , Migración Humana , Humanos , Pueblo Asiatico/genética , Etnicidad/genética , India/etnología , Tailandia/etnología , Migrantes
14.
Am J Hum Genet ; 110(11): 1888-1902, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37890495

RESUMEN

Admixed individuals offer unique opportunities for addressing limited transferability in polygenic scores (PGSs), given the substantial trans-ancestry genetic correlation in many complex traits. However, they are rarely considered in PGS training, given the challenges in representing ancestry-matched linkage-disequilibrium reference panels for admixed individuals. Here we present inclusive PGS (iPGS), which captures ancestry-shared genetic effects by finding the exact solution for penalized regression on individual-level data and is thus naturally applicable to admixed individuals. We validate our approach in a simulation study across 33 configurations with varying heritability, polygenicity, and ancestry composition in the training set. When iPGS is applied to n = 237,055 ancestry-diverse individuals in the UK Biobank, it shows the greatest improvements in Africans by 48.9% on average across 60 quantitative traits and up to 50-fold improvements for some traits (neutrophil count, R2 = 0.058) over the baseline model trained on the same number of European individuals. When we allowed iPGS to use n = 284,661 individuals, we observed an average improvement of 60.8% for African, 11.6% for South Asian, 7.3% for non-British White, 4.8% for White British, and 17.8% for the other individuals. We further developed iPGS+refit to jointly model the ancestry-shared and -dependent genetic effects when heterogeneous genetic associations were present. For neutrophil count, for example, iPGS+refit showed the highest predictive performance in the African group (R2 = 0.115), which exceeds the best predictive performance for the White British group (R2 = 0.090 in the iPGS model), even though only 1.49% of individuals used in the iPGS training are of African ancestry. Our results indicate the power of including diverse individuals for developing more equitable PGS models.


Asunto(s)
Herencia Multifactorial , Población Blanca , Humanos , Herencia Multifactorial/genética , Población Blanca/genética , Fenotipo , Población Negra/genética , Pueblo Asiatico/genética , Estudio de Asociación del Genoma Completo/métodos
15.
Brief Bioinform ; 25(6)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441246

RESUMEN

Over the past decade, genome-wide association studies have identified thousands of variants significantly associated with complex traits. For each locus, gene expression levels are needed to further explore its biological functions. To address this, the PrediXcan algorithm leverages large-scale reference data to impute the gene expression level from single nucleotide polymorphisms, and thus the gene-trait associations can be tested to identify the candidate causal genes. However, a challenge arises due to the fact that most reference data are from subjects of European ancestry, and the accuracy and robustness of predicted gene expression in subjects of East Asian (EAS) ancestry remains unclear. Here, we first simulated a variety of scenarios to explore the impact of the level of population diversity on gene expression. Population differentiated variants were estimated by using the allele frequency information from The Genome Aggregation Database. We found that the weights of a variants was the main factor that affected the gene expression predictions, and that ~70% of variants were significantly population differentiated based on proportion tests. To provide insights into this population effect on gene expression levels, we utilized the allele frequency information to develop a gene expression reference panel, Predict Asian-Population (PredictAP), for EAS ancestry. PredictAP can be viewed as an auxiliary tool for PrediXcan when using genotype data from EAS subjects.


Asunto(s)
Algoritmos , Pueblo Asiatico , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo/métodos , Pueblo Asiatico/genética , Genética de Población , Bases de Datos Genéticas , Asia Oriental , Pueblos del Este de Asia
16.
Nature ; 582(7811): 240-245, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499647

RESUMEN

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Asunto(s)
Pueblo Asiatico/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Aldehído Deshidrogenasa Mitocondrial/genética , Alelos , Ancirinas/genética , Índice de Masa Corporal , Estudios de Casos y Controles , Europa (Continente)/etnología , Proteínas del Ojo/genética , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Factores de Transcripción/genética , Transcripción Genética , Proteína Homeobox SIX3
17.
Nature ; 580(7801): 93-99, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238934

RESUMEN

Prostate cancer is the second most common cancer in men worldwide1. Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients2,3. However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.


Asunto(s)
Pueblo Asiatico/genética , Epigénesis Genética , Epigenómica , Genoma Humano/genética , Genómica , Mutación , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/genética , Proteínas Portadoras/genética , Transformación Celular Neoplásica/genética , China , Estudios de Cohortes , ADN Helicasas/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Neoplasias de la Próstata/patología , RNA-Seq , Transcriptoma/genética
18.
PLoS Genet ; 19(8): e1010399, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578977

RESUMEN

Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.


Asunto(s)
Introgresión Genética , Genoma Humano , Hominidae , Cromosoma X , Animales , Humanos , Masculino , Pueblo Asiatico/genética , Genoma , Genoma Humano/genética , Hominidae/genética , Hombre de Neandertal/genética , Cromosoma X/genética , Factores Sexuales , Haplotipos/genética , Introgresión Genética/genética , Cromosomas Humanos/genética , Femenino , Personas del Sur de Asia/genética , Pueblo Europeo/genética
19.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38995236

RESUMEN

Kazakh people, like many other populations that settled in Central Asia, demonstrate an array of mixed anthropological features of East Eurasian (EEA) and West Eurasian (WEA) populations, indicating a possible scenario of biological admixture between already differentiated EEA and WEA populations. However, their complex biological origin, genomic makeup, and genetic interaction with surrounding populations are not well understood. To decipher their genetic structure and population history, we conducted, to our knowledge, the first whole-genome sequencing study of Kazakhs residing in Xinjiang (KZK). We demonstrated that KZK derived their ancestries from 4 ancestral source populations: East Asian (∼39.7%), West Asian (∼28.6%), Siberian (∼23.6%), and South Asian (∼8.1%). The recognizable interactions of EEA and WEA ancestries in Kazakhs were dated back to the 15th century BCE. Kazakhs were genetically distinctive from the Uyghurs in terms of their overall genomic makeup, although the 2 populations were closely related in genetics, and both showed a substantial admixture of western and eastern peoples. Notably, we identified a considerable sex-biased admixture, with an excess of western males and eastern females contributing to the KZK gene pool. We further identified a set of genes that showed remarkable differentiation in KZK from the surrounding populations, including those associated with skin color (SLC24A5, OCA2), essential hypertension (HLA-DQB1), hypertension (MTHFR, SLC35F3), and neuron development (CNTNAP2). These results advance our understanding of the complex history of contacts between Western and Eastern Eurasians, especially those living or along the old Silk Road.


Asunto(s)
Pueblo Asiatico , Humanos , Masculino , Femenino , Pueblo Asiatico/genética , China , Genoma Humano , Secuenciación Completa del Genoma , Pueblo de Asia Central
20.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38839045

RESUMEN

Human populations harbor a high concentration of deleterious genetic variants. Here, we tested the hypothesis that non-random mating practices affect the distribution of these variants, through exposure in the homozygous state, leading to their purging from the population gene pool. To do so, we produced whole-genome sequencing data for two pairs of Asian populations exhibiting different alliance rules and rates of inbreeding, but with similar effective population sizes. The results show that populations with higher rates of inbred matings do not purge deleterious variants more efficiently. Purging therefore has a low efficiency in human populations, and different mating practices lead to a similar mutational load.


Asunto(s)
Pueblo Asiatico , Humanos , Pueblo Asiatico/genética , Genética de Población/métodos , Variación Genética , Endogamia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA