Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.693
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(1): 3-5, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198853

RESUMEN

Tissue-resident macrophages are essential for maintaining organismal homeostasis, but the precise mechanisms that macrophages use to perform this function are not fully understood. In this issue of Immunity, He et al. demonstrate that renal macrophages surveil and sample urine particles, ensuring optimal collecting duct flow and preventing kidney stone development.


Asunto(s)
Riñón , Ríos , Macrófagos , Homeostasis
2.
Nature ; 629(8014): 1075-1081, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811711

RESUMEN

Climate warming induces shifts from snow to rain in cold regions1, altering snowpack dynamics with consequent impacts on streamflow that raise challenges to many aspects of ecosystem services2-4. A straightforward conceptual model states that as the fraction of precipitation falling as snow (snowfall fraction) declines, less solid water is stored over the winter and both snowmelt and streamflow shift earlier in season. Yet the responses of streamflow patterns to shifts in snowfall fraction remain uncertain5-9. Here we show that as snowfall fraction declines, the timing of the centre of streamflow mass may be advanced or delayed. Our results, based on analysis of 1950-2020 streamflow measurements across 3,049 snow-affected catchments over the Northern Hemisphere, show that mean snowfall fraction modulates the seasonal response to reductions in snowfall fraction. Specifically, temporal changes in streamflow timing with declining snowfall fraction reveal a gradient from earlier streamflow in snow-rich catchments to delayed streamflow in less snowy catchments. Furthermore, interannual variability of streamflow timing and seasonal variation increase as snowfall fraction decreases across both space and time. Our findings revise the 'less snow equals earlier streamflow' heuristic and instead point towards a complex evolution of seasonal streamflow regimes in a snow-dwindling world.


Asunto(s)
Calentamiento Global , Lluvia , Estaciones del Año , Nieve , Ecosistema , Ríos , Factores de Tiempo , Movimientos del Agua , Calentamiento Global/estadística & datos numéricos , Análisis Espacio-Temporal
3.
Nature ; 627(8004): 559-563, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509278

RESUMEN

Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks1. Accurate and timely warnings are critical for mitigating flood risks2, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that artificial intelligence-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a five-day lead time that is similar to or better than the reliability of nowcasts (zero-day lead time) from a current state-of-the-art global modelling system (the Copernicus Emergency Management Service Global Flood Awareness System). In addition, we achieve accuracies over five-year return period events that are similar to or better than current accuracies over one-year return period events. This means that artificial intelligence can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed here was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.


Asunto(s)
Inteligencia Artificial , Simulación por Computador , Inundaciones , Predicción , Predicción/métodos , Reproducibilidad de los Resultados , Ríos , Hidrología , Calibración , Factores de Tiempo , Planificación en Desastres/métodos
4.
Nature ; 628(8009): 776-781, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658683

RESUMEN

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Asunto(s)
Carbono , Agua Dulce , Carbono/análisis , Carbono/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Agua Dulce/química , Lagos/química , Lignina/química , Oxidación-Reducción , Oxígeno/química , Polifenoles/química , Ríos/química , Suecia , Taninos/química , Ciclo del Carbono
5.
Nature ; 613(7944): 449-459, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653564

RESUMEN

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Ríos , Dióxido de Carbono/análisis , Secuestro de Carbono , Gases de Efecto Invernadero/análisis
6.
Nature ; 621(7979): 530-535, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587344

RESUMEN

Methane (CH4) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH4 emissions from freshwater ecosystems1,2, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH4 emissions remain highly uncertain3,4. Here we report a spatially explicit global estimate of CH4 emissions from running waters, accounting for 27.9 (16.7-39.7) Tg CH4 per year and roughly equal in magnitude to those of other freshwater systems5,6. Riverine CH4 emissions are not strongly temperature dependent, with low average activation energy (EM = 0.14 eV) compared with that of lakes and wetlands (EM = 0.96 eV)1. By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land-water connections in regulating CH4 supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.


Asunto(s)
Ecosistema , Metano , Ríos , Lagos/química , Metano/análisis , Metano/metabolismo , Ríos/química , Humedales , Calentamiento Global/estadística & datos numéricos , Actividades Humanas
7.
Nature ; 620(7975): 787-793, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612396

RESUMEN

Increasing gold and mineral mining activity in rivers across the global tropics has degraded ecosystems and threatened human health1,2. Such river mineral mining involves intensive excavation and sediment processing in river corridors, altering river form and releasing excess sediment downstream2. Increased suspended sediment loads can reduce water clarity and cause siltation to levels that may result in disease and mortality in fish3,4, poor water quality5 and damage to human infrastructure6. Although river mining has been investigated at local scales, no global synthesis of its physical footprint and impacts on hydrologic systems exists, leaving its full environmental consequences unknown. We assemble and analyse a 37-year satellite database showing pervasive, increasing river mineral mining worldwide. We identify 396 mining districts in 49 countries, concentrated in tropical waterways that are almost universally altered by mining-derived sediment. Of 173 mining-affected rivers, 80% have suspended sediment concentrations (SSCs) more than double pre-mining levels. In 30 countries in which mining affects large (>50 m wide) rivers, 23 ± 19% of large river length is altered by mining-derived sediment, a globe-spanning effect representing 35,000 river kilometres, 6% (±1% s.e.) of all large tropical river reaches. Our findings highlight the ubiquity and intensity of mining-associated degradation in tropical river systems.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Minería , Ríos , Clima Tropical , Animales , Humanos , Bases de Datos Factuales , Oro , Hidrología , Minería/estadística & datos numéricos , Minería/tendencias , Peces , Sedimentos Geológicos/análisis
8.
Nature ; 620(7976): 1013-1017, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438527

RESUMEN

Pesticides are ubiquitous environmental pollutants negatively affecting ecosystem and human health1,2. About 3 Tg of pesticides are used annually in agriculture to protect crops3. How much of these pesticides remain on land and reach the aquifer or the ocean is uncertain. Monitoring their environmental fate is challenging, and a detailed picture of their mobility in time and space is largely missing4. Here, we develop a process-based model accounting for the hydrology and biogeochemistry of the 92 most used agricultural pesticide active substances to assess their pathways through the principal catchments of the world and draw a near-present picture of the global land and river budgets, including discharge to oceans. Of the 0.94 Tg net annual pesticide input in 2015 used in this study, 82% is biologically degraded, 10% remains as residue in soil and 7.2% leaches below the root zone. Rivers receive 0.73 Gg of pesticides from their drainage at a rate of 10 to more than 100 kg yr-1 km-1. By contrast to their fate in soil, only 1.1% of pesticides entering rivers are degraded along streams, exceeding safety levels (concentrations >1 µg l-1) in more than 13,000 km of river length, with 0.71 Gg of pesticide active ingredients released to oceans every year. Herbicides represent the prevalent pesticide residue on both land (72%) and river outlets (62%).


Asunto(s)
Agricultura , Monitoreo del Ambiente , Contaminantes Ambientales , Océanos y Mares , Plaguicidas , Ríos , Suelo , Humanos , Ecosistema , Plaguicidas/análisis , Ríos/química , Suelo/química , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Herbicidas/análisis , Contaminantes del Suelo/análisis , Contaminantes Ambientales/análisis
9.
Nature ; 624(7990): 115-121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030724

RESUMEN

The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of the changes in the geodynamic and climatic forcing fails to provide a unified theory for the long-term pattern of evolution of life on Earth. Here we couple climate and plate tectonics models to numerically reconstruct the evolution of the Earth's landscape over the entire Phanerozoic eon, which we then compare to palaeo-diversity datasets from marine animal and land plant genera. Our results indicate that biodiversity is strongly reliant on landscape dynamics, which at all times determine the carrying capacity of both the continental domain and the oceanic domain. In the oceans, diversity closely adjusted to the riverine sedimentary flux that provides nutrients for primary production. On land, plant expansion was hampered by poor edaphic conditions until widespread endorheic basins resurfaced continents with a sedimentary cover that facilitated the development of soil-dependent rooted flora, and the increasing variety of the landscape additionally promoted their development.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Evolución Biológica , Clima , Planeta Tierra , Plantas , Animales , Océanos y Mares , Suelo/química , Plantas/clasificación , Organismos Acuáticos/clasificación , Modelos Biológicos , Ríos/química , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química
10.
Nature ; 606(7914): 516-521, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650431

RESUMEN

It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics1-4. However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process5,6 and mantle-scale tectonic model7. End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm > 0.5); type 2, flux steady state8, strength controlled (Bm ≈ 0.4-0.5); and type 3, flux steady state, erosion controlled (Bm < 0.4). Our results indicate that tectonics dominate in Himalaya-Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts.


Asunto(s)
Altitud , Reología , Erosión del Suelo , Clima , Modelos Teóricos , Nueva Zelanda , Ríos , Taiwán
11.
Nature ; 603(7901): 401-410, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296840

RESUMEN

Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters-the 'land-to-ocean aquatic continuum' (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional 'long-range loop', which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two 'short-range loops' that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.


Asunto(s)
Dióxido de Carbono , Ecosistema , Océanos y Mares , Atmósfera , Ciclo del Carbono , Actividades Humanas , Humanos , Ríos
12.
Nature ; 591(7850): 391-395, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731949

RESUMEN

Most rivers exchange water with surrounding aquifers1,2. Where groundwater levels lie below nearby streams, streamwater can infiltrate through the streambed, reducing streamflow and recharging the aquifer3. These 'losing' streams have important implications for water availability, riparian ecosystems and environmental flows4-10, but the prevalence of losing streams remains poorly constrained by continent-wide in situ observations. Here we analyse water levels in 4.2 million wells across the contiguous USA and show that nearly two-thirds (64 per cent) of them lie below nearby stream surfaces, implying that these streamwaters will seep into the subsurface if it is sufficiently permeable. A lack of adequate permeability data prevents us from quantifying the magnitudes of these subsurface flows, but our analysis nonetheless demonstrates widespread potential for streamwater losses into underlying aquifers. These potentially losing rivers are more common in drier climates, flatter landscapes and regions with extensive groundwater pumping. Our results thus imply that climatic factors, geological conditions and historic groundwater pumping jointly contribute to the widespread risk of streams losing flow into surrounding aquifers instead of gaining flow from them. Recent modelling studies10 have suggested that losing streams could become common in future decades, but our direct observations show that many rivers across the USA are already potentially losing flow, highlighting the importance of coordinating groundwater and surface water policy.


Asunto(s)
Agua Subterránea/análisis , Ríos , Clima , Sequías , Ecosistema , Humedad , Estados Unidos , Abastecimiento de Agua
13.
Nature ; 594(7863): 391-397, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135525

RESUMEN

Flowing waters have a unique role in supporting global biodiversity, biogeochemical cycles and human societies1-5. Although the importance of permanent watercourses is well recognized, the prevalence, value and fate of non-perennial rivers and streams that periodically cease to flow tend to be overlooked, if not ignored6-8. This oversight contributes to the degradation of the main source of water and livelihood for millions of people5. Here we predict that water ceases to flow for at least one day per year along 51-60 per cent of the world's rivers by length, demonstrating that non-perennial rivers and streams are the rule rather than the exception on Earth. Leveraging global information on the hydrology, climate, geology and surrounding land cover of the Earth's river network, we show that non-perennial rivers occur within all climates and biomes, and on every continent. Our findings challenge the assumptions underpinning foundational river concepts across scientific disciplines9. To understand and adequately manage the world's flowing waters, their biodiversity and functional integrity, a paradigm shift is needed towards a new conceptual model of rivers that includes flow intermittence. By mapping the distribution of non-perennial rivers and streams, we provide a stepping-stone towards addressing this grand challenge in freshwater science.


Asunto(s)
Mapeo Geográfico , Ríos , Clima , Desecación , Humanos , Hidrología , Modelos Teóricos , Factores de Tiempo , Incertidumbre , Abastecimiento de Agua/estadística & datos numéricos
14.
Nature ; 598(7882): 624-628, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616038

RESUMEN

Vegetation modulates Earth's water, energy and carbon cycles. How its functions might change in the future largely depends on how it copes with droughts1-4. There is evidence that, in places and times of drought, vegetation shifts water uptake to deeper soil5-7 and rock8,9 moisture as well as groundwater10-12. Here we differentiate and assess plant use of four types of water sources: precipitation in the current month (source 1), past precipitation stored in deeper unsaturated soils and/or rocks (source 2), past precipitation stored in groundwater (source 3, locally recharged) and groundwater from precipitation fallen on uplands via river-groundwater convergence toward lowlands (source 4, remotely recharged). We examine global and seasonal patterns and drivers in plant uptake of the four sources using inverse modelling and isotope-based estimates. We find that (1), globally and annually, 70% of plant transpiration relies on source 1, 18% relies on source 2, only 1% relies on source 3 and 10% relies on source 4; (2) regionally and seasonally, source 1 is only 19% in semi-arid, 32% in Mediterranean and 17% in winter-dry tropics in the driest months; and (3) at landscape scales, source 2, taken up by deep roots in the deep vadose zone, is critical in uplands in dry months, but source 4 is up to 47% in valleys where riparian forests and desert oases are found. Because the four sources originate from different places and times, move at different spatiotemporal scales and respond with different sensitivity to climate and anthropogenic forces, understanding the space and time origins of plant water sources can inform ecosystem management and Earth system models on the critical hydrological pathways linking precipitation to vegetation.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Suelo , Agua/fisiología , Clima , Agua Subterránea , Hidrología , Modelos Teóricos , Transpiración de Plantas , Plantas , Ríos , Estaciones del Año , Análisis Espacio-Temporal
15.
Proc Natl Acad Sci U S A ; 121(5): e2307065121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38266048

RESUMEN

River ecosystem function depends on flow regimes that are increasingly modified by changes in climate, land use, water extraction, and flow regulation. Given the wide range of variation in flow regime modifications and autotrophic communities in rivers, it has been challenging to predict which rivers will be more resilient to flow disturbances. To better understand how river productivity is disturbed by and recovers from high-flow disturbance events, we used a continental-scale dataset of daily gross primary production time series from 143 rivers to estimate growth of autotrophic biomass and ecologically relevant flow disturbance thresholds using a modified population model. We compared biomass recovery rates across hydroclimatic gradients and catchment characteristics to evaluate macroscale controls on ecosystem recovery. Estimated biomass accrual (i.e., recovery) was fastest in wider rivers with less regulated flow regimes and more frequent instances of biomass removal during high flows. Although disturbance flow thresholds routinely fell below the estimated bankfull flood (i.e., the 2-y flood), a direct comparison of disturbance flows estimated by our biomass model and a geomorphic model revealed that biomass disturbance thresholds were usually greater than bed disturbance thresholds. We suggest that primary producers in rivers vary widely in their capacity to recover following flow disturbances, and multiple, interacting macroscale factors control productivity recovery rates, although river width had the strongest overall effect. Biomass disturbance flow thresholds varied as a function of geomorphology, highlighting the need for data such as bed slope and grain size to predict how river ecosystems will respond to changing flow regimes.


Asunto(s)
Ecosistema , Inundaciones , Ríos , Biomasa , Clima
16.
Proc Natl Acad Sci U S A ; 121(18): e2215682121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648481

RESUMEN

Sustainability challenges related to food production arise from multiple nature-society interactions occurring over long time periods. Traditional methods of quantitative analysis do not represent long-term changes in the networks of system components, including institutions and knowledge that affect system behavior. Here, we develop an approach to study system structure and evolution by combining a qualitative framework that represents sustainability-relevant human, technological, and environmental components, and their interactions, mediated by knowledge and institutions, with network modeling that enables quantitative metrics. We use this approach to examine the water and food system in the Punjab province of the Indus River Basin in Pakistan, exploring how food production has been sustained, despite high population growth, periodic floods, and frequent political and economic disruptions. Using network models of five periods spanning 75 y (1947 to 2022), we examine how quantitative metrics of network structure relate to observed sustainability-relevant outcomes and how potential interventions in the system affect these quantitative metrics. We find that the persistent centrality of some and evolving centrality of other key nodes, coupled with the increasing number and length of pathways connecting them, are associated with sustaining food production in the system over time. Our assessment of potential interventions shows that regulating groundwater pumping and phasing out fossil fuels alters network pathways, and helps identify potential vulnerabilities for future food production.


Asunto(s)
Abastecimiento de Alimentos , Pakistán , Humanos , Ríos , Agricultura , Conservación de los Recursos Naturales
17.
Proc Natl Acad Sci U S A ; 121(17): e2321303121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38640342

RESUMEN

Understanding the transient dynamics of interlinked social-ecological systems (SES) is imperative for assessing sustainability in the Anthropocene. However, how to identify critical transitions in real-world SES remains a formidable challenge. In this study, we present an evolutionary framework to characterize these dynamics over an extended historical timeline. Our approach leverages multidecadal rates of change in socioeconomic data, paleoenvironmental, and cutting-edge sedimentary ancient DNA records from China's Yangtze River Delta, one of the most densely populated and intensively modified landscapes on Earth. Our analysis reveals two significant social-ecological transitions characterized by contrasting interactions and feedback spanning several centuries. Initially, the regional SES exhibited a loosely connected and ecologically sustainable regime. Nevertheless, starting in the 1950s, an increasingly interconnected regime emerged, ultimately resulting in the crossing of tipping points and an unprecedented acceleration in soil erosion, water eutrophication, and ecosystem degradation. Remarkably, the second transition occurring around the 2000s, featured a notable decoupling of socioeconomic development from ecoenvironmental degradation. This decoupling phenomenon signifies a more desirable reconfiguration of the regional SES, furnishing essential insights not only for the Yangtze River Basin but also for regions worldwide grappling with similar sustainability challenges. Our extensive multidecadal empirical investigation underscores the value of coevolutionary approaches in understanding and addressing social-ecological system dynamics.


Asunto(s)
Ecosistema , Ríos , Eutrofización , Conservación de los Recursos Naturales/métodos
18.
Proc Natl Acad Sci U S A ; 121(14): e2310513121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498724

RESUMEN

Climate change is affecting the phenology of organisms and ecosystem processes across a wide range of environments. However, the links between organismal and ecosystem process change in complex communities remain uncertain. In snow-dominated watersheds, snowmelt in the spring and early summer, followed by a long low-flow period, characterizes the natural flow regime of streams and rivers. Here, we examined how earlier snowmelt will alter the phenology of mountain stream organisms and ecosystem processes via an outdoor mesocosm experiment in stream channels in the Eastern Sierra Nevada, California. The low-flow treatment, simulating a 3- to 6-wk earlier return to summer baseflow conditions projected under climate change scenarios in the region, increased water temperature and reduced biofilm production to respiration ratios by 32%. Additionally, most of the invertebrate species explaining community change (56% and 67% of the benthic and emergent taxa, respectively), changed in phenology as a consequence of the low-flow treatment. Further, emergent flux pulses of the dominant insect group (Chironomidae) almost doubled in magnitude, benefitting a generalist riparian predator. Changes in both invertebrate community structure (composition) and functioning (production) were mostly fine-scale, and response diversity at the community level stabilized seasonally aggregated responses. Our study illustrates how climate change in vulnerable mountain streams at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale changes in phenology-leading to novel predator-prey "matches" or "mismatches" even when community structure and ecosystem processes appear stable at the annual scale.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Ríos , Temperatura , Invertebrados , Estaciones del Año
19.
Nature ; 577(7788): 69-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894147

RESUMEN

More than one-third of Earth's landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic1,2, ecologic3,4, climatic5 and socio-economic6-8 functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world1, the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures9,10, were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-°C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 ± 0.08 days per 1-°C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


Asunto(s)
Hielo , Modelos Teóricos , Ríos/química , Predicción , Fenómenos Geológicos , Imágenes Satelitales
20.
Nature ; 588(7839): 631-635, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239780

RESUMEN

Intensive fisheries have reduced fish biodiversity and abundance in aquatic ecosystems worldwide1-3. 'No-take' marine reserves have become a cornerstone of marine ecosystem-based fisheries management4-6, and their benefits for adjacent fisheries are maximized when reserve design fosters synergies among nearby reserves7,8. The applicability of this marine reserve network paradigm to riverine biodiversity and inland fisheries remains largely untested. Here we show that reserves created by 23 separate communities in Thailand's Salween basin have markedly increased fish richness, density, and biomass relative to adjacent areas. Moreover, key correlates of the success of protected areas in marine ecosystems-particularly reserve size and enforcement-predict differences in ecological benefits among riverine reserves. Occupying a central position in the network confers additional gains, underscoring the importance of connectivity within dendritic river systems. The emergence of network-based benefits is remarkable given that these reserves are young (less than 25 years old) and arose without formal coordination. Freshwater ecosystems are under-represented among the world's protected areas9, and our findings suggest that networks of small, community-based reserves offer a generalizable model for protecting biodiversity and augmenting fisheries as the world's rivers face unprecedented pressures10,11.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/organización & administración , Peces/clasificación , Peces/fisiología , Ríos , Clima Tropical , Animales , Biomasa , Mapeo Geográfico , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA