Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.692
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984969

RESUMEN

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Asunto(s)
Epimedium , MicroARNs , Osteoblastos , ARN Largo no Codificante , Transducción de Señal , Proteína Smad2 , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Proteína Smad2/metabolismo , Proteína Smad2/genética , Ratones , Epimedium/química , Transducción de Señal/efectos de los fármacos , Masculino , Regeneración Ósea/efectos de los fármacos , Humanos , Regulación de la Expresión Génica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética
2.
Small ; 20(23): e2310734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38143290

RESUMEN

Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.


Asunto(s)
Regeneración Ósea , Células Endoteliales de la Vena Umbilical Humana , Osteoporosis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Osteogénesis/efectos de los fármacos
3.
Small ; 20(19): e2309230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112271

RESUMEN

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Asunto(s)
Regeneración Ósea , Colágeno , Células Madre Mesenquimatosas , Nanocables , Osteogénesis , Andamios del Tejido , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanocables/química , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Humanos , Colágeno/química , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Animales , Porphyromonas gingivalis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Streptococcus mutans/fisiología , Streptococcus mutans/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
4.
Biomacromolecules ; 25(6): 3475-3485, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38741285

RESUMEN

Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff ß-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.


Asunto(s)
Alginatos , Regeneración Ósea , Resistencia a la Tracción , Alginatos/química , Regeneración Ósea/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Ácido Glucurónico/química , Ensayo de Materiales , Ácidos Hexurónicos/química , Andamios del Tejido/química
5.
Biomacromolecules ; 25(7): 4139-4155, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38924768

RESUMEN

Extracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently. The small RNA sequencing of EVs revealed that miR-204-5p, miR-221-3p, and miR-148a-3p are among the highly upregulated miRNAs that have an inhibitory effect on the function of mRNAs, Sox11, Timp3, and Ccna2 in host cells, which is probably responsible for enhancing the activity of osteoblastic genes. To enhance the bioavailability of EVs, they are encapsulated in a chitosan-collagen composite hydrogel that serves as a bioresorbable extracellular matrix (ECM). The EVs-integrated scaffold (DM-EVs + Scaffold) enhances bone regeneration in critical-sized calvarial bone defects in rats within 8 weeks of implantation by providing the ECM cues. The shelf life of DM-EVs + Scaffold indicates that the bioactivity of EVs and their cargo in the polymer matrix remains intact for up to 30 days. Integrating mineralized cell-derived EVs into an ECM represents a bioresorbable matrix with a cell-free method for promoting new bone formation through the miRNA-mRNA regulatory axis.


Asunto(s)
Regeneración Ósea , Matriz Extracelular , Vesículas Extracelulares , MicroARNs , Osteoblastos , ARN Mensajero , Regeneración Ósea/efectos de los fármacos , Animales , MicroARNs/genética , Osteoblastos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ratas , Ratones , Matriz Extracelular/metabolismo , ARN Mensajero/genética , Diferenciación Celular , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Polisacáridos/química , Ratas Sprague-Dawley , Masculino
6.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743836

RESUMEN

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ratas , Regeneración Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ingeniería de Tejidos/métodos , Poliésteres/química , Diferenciación Celular , Ratas Sprague-Dawley , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Cultivadas , Proliferación Celular , Cráneo/lesiones , Cráneo/patología , Durapatita/química , Durapatita/farmacología
7.
Biomacromolecules ; 25(7): 4074-4086, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838242

RESUMEN

The presence of oxidative stress in bone defects leads to delayed regeneration, especially in the aged population and patients receiving cancer treatment. This delay is attributed to the increased levels of reactive oxygen species (ROS) in these populations due to the accumulation of senescent cells. Tissue-engineered scaffolds are emerging as an alternative method to treat bone defects. In this study, we engineered tissue scaffolds tailored to modulate the adverse effects of oxidative stress and promote bone regeneration. We used polycaprolactone to fabricate nanofibrous mats by using electrospinning. We exploited the ROS-scavenging properties of cerium oxide nanoparticles to alleviate the high oxidative stress microenvironment caused by the presence of senescent cells. We characterized the nanofibers for their physical and mechanical properties and utilized an ionization-radiation-based model to induce senescence in bone cells. We demonstrate that the presence of ceria can modulate ROS levels, thereby reducing the level of senescence and promoting osteogenesis. Overall, this study demonstrates that ceria-infused nanofibrous scaffolds can be used for augmenting the osteogenic activity of senescent progenitor cells, which has important implications for engineering bone tissue scaffolds for patients with low regeneration capabilities.


Asunto(s)
Regeneración Ósea , Senescencia Celular , Cerio , Nanofibras , Osteogénesis , Especies Reactivas de Oxígeno , Ingeniería de Tejidos , Andamios del Tejido , Cerio/química , Cerio/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Senescencia Celular/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Humanos , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliésteres/química , Animales , Huesos/efectos de los fármacos
8.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433534

RESUMEN

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cobalto , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteogénesis , Ligamento Periodontal , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Cobalto/farmacología , Diferenciación Celular/efectos de los fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hipoxia de la Célula , Células Madre/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Pérdida de Hueso Alveolar/metabolismo , Fosfoproteínas/metabolismo , Masculino , Conejos , Regeneración Ósea/efectos de los fármacos
9.
Nanotechnology ; 35(32)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688249

RESUMEN

Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoß, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Indoles , Nanofibras , Osteogénesis , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Nanofibras/química , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos , Línea Celular , Proteínas Inmovilizadas/farmacología , Proteínas Inmovilizadas/química , Supervivencia Celular/efectos de los fármacos
10.
J Periodontal Res ; 59(3): 521-529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38356157

RESUMEN

OBJECTIVE: This study aimed to evaluate the regenerative capacities of octacalcium phosphate collagen composite (OCP/Col) in one-wall intrabony defects in dogs. The background data discuss the present state of the field: No study has assessed the efficacy of OCP/Col for periodontal regeneration therapy despite the fact that OCP/Col has proved to be efficient for bone regeneration. METHODS: In six beagle dogs, the mandibular left third premolars were extracted 12 weeks before the experimental surgery. Standardized bone defects (5 mm in height and 4 mm in width) were simulated on the distal surface of the second premolars and mesially on the fourth premolars. The defect was filled with either OCP/Col (experimental group) or left empty (control group). Histological and histomorphometric characteristics were compared 8 weeks after surgery. RESULTS: No infectious or ankylotic complications were detected at any of the tested sites. The experimental group exhibited a significantly greater volume, height, and area of newly formed bone than the control group. The former also showed a greater height of the newly formed cementum than the latter, although the results were not statistically significant. The newly formed periodontal ligaments were inserted into newly formed bone and cementum in the experimental group. CONCLUSION: OCP/Col demonstrated high efficacy for bone and periodontal tissue regeneration that can be successfully applied for one-wall intrabony defects.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Colágeno , Animales , Perros , Fosfatos de Calcio/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Colágeno/uso terapéutico , Pérdida de Hueso Alveolar/cirugía , Ligamento Periodontal/patología , Sustitutos de Huesos/uso terapéutico , Regeneración Tisular Guiada Periodontal/métodos , Masculino , Mandíbula/cirugía , Cemento Dental/patología
11.
J Periodontal Res ; 59(4): 679-688, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527968

RESUMEN

OBJECTIVE: This study aimed to investigate the factors influencing the clinical outcomes of regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2). BACKGROUND: rhFGF-2 promotes periodontal regeneration, and identifying the factors influencing this regeneration is important for optimizing the effectiveness of rhFGF-2. METHODS AND MATERIALS: This study used a hospital information-integrated database to identify patients who underwent periodontal regenerative therapy with rhFGF-2. Factors included age, smoking status, diabetes mellitus (DM), periodontal inflamed surface area (PISA) at the initial visit, whether the most posterior tooth was involved or not, and preoperative radiological bone defect angle. Periodontal regenerative therapy outcomes were defined as good if radiographic bone fill ≥35% or periodontal pocket closure at 9-15 months after surgery. Bone fill rate (%) and periodontal pocket depth (mm) were also used as outcome measures. Factors were evaluated by simple regression analysis, and then the association between factors and the outcomes was determined by multivariate analysis. RESULTS: PISA and age at the first visit did not significantly influence the success or failure of bone fill rate byrhFGF-2. However, DM, radiographic bone defect angle, and the most posterior tooth significantly influenced the regenerative effect (success/failure in bone fill) of rhFGF-2. The most posterior tooth was significantly associated with bone fill rate by rhFGF-2. Examination of the association between pocket closure and factors shows that the most posterior tooth significantly influenced. The most posterior tooth and preoperative PPD were significantly associated with pocket reduction depth. For the most posterior tooth, a significantly higher bone regeneration rate (p < .05) was observed with a combination of autologous bone graft and rhFGF-2 than with rhFGF-2 alone, and the effect was significant in multivariate analysis. CONCLUSIONS: The radiographic bone defect angle, the involvement of most posterior teeth, and the presence of DM influenced the effectiveness of rhFGF-2 in periodontal regeneration. However, PISA values and age at the initial visit had no significant effect.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Regeneración Tisular Guiada Periodontal , Proteínas Recombinantes , Humanos , Masculino , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Factor 2 de Crecimiento de Fibroblastos/farmacología , Persona de Mediana Edad , Femenino , Estudios de Casos y Controles , Regeneración Tisular Guiada Periodontal/métodos , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/farmacología , Resultado del Tratamiento , Adulto , Anciano , Regeneración Ósea/efectos de los fármacos , Pérdida de Hueso Alveolar/diagnóstico por imagen
12.
J Periodontal Res ; 59(3): 589-598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481308

RESUMEN

OBJECTIVES: In order to evaluate the effect of methacrylated hyaluronic acid (HAMA) hydrogels containing the recombinant human amelogenin (rhAm) in vitro and in vivo. BACKGROUND: The ultimate goal in treating periodontal disease is to control inflammation and achieve regeneration of periodontal tissues. In recent years, methacrylated hyaluronic acid (HAMA) containing recombinant human amyloid protein (rhAm) has been widely used as a new type of biomaterial in tissue engineering and regenerative medicine. However, there is a lack of comprehensive research on the periodontal regeneration effects of this hydrogel. This experiment aims to explore the application of photoresponsive recombinant human amelogenin-loaded hyaluronic acid hydrogel for periodontal tissue regeneration and provide valuable insights into its potential use in this field. MATERIALS AND METHODS: The effects of rhAm-HAMA hydrogel on the proliferation of human periodontal ligament cells (hPDLCs) were assessed using the CCK-8 kit. The osteogenic differentiation of hPDLCs was evaluated through ALP staining and real-time PCR. Calvarial parietal defects were created in 4-week-old Sprague Dawley rats and implanted with deproteinized bovine bone matrix in different treatment groups. The animals were euthanized after 4 and 8 weeks of healing. The bone volume of the defect was observed by micro-CT and histological analysis. RESULTS: Stimulating hPDLCs with rhAm-HAMA hydrogel did not significantly affect their proliferation (p > .05). ALP staining and real-time PCR results demonstrated that the rhAm-HAMA group exhibited a significant upregulation of osteoclastic gene expression (p < .05). Micro-CT results revealed a significant increase in mineralized tissue volume fraction (MTV/TV%), trabecular bone number (Tb.N), and mineralized tissue density (MTD) of the bone defect area in the rhAm-HAMA group compared to the other groups (p < .05). The results of hematoxylin and eosin staining and Masson staining at 8 weeks post-surgery further supported the results of the micro-CT. CONCLUSIONS: The results of this study indicate that rhAm-HAMA hydrogel could effectively promote the osteogenic differentiation of hPDLCs and stabilize bone substitutes in the defects that enhance the bone regeneration in vivo.


Asunto(s)
Amelogenina , Regeneración Ósea , Diferenciación Celular , Proliferación Celular , Ácido Hialurónico , Hidrogeles , Ligamento Periodontal , Ratas Sprague-Dawley , Ácido Hialurónico/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Amelogenina/farmacología , Amelogenina/uso terapéutico , Humanos , Ligamento Periodontal/efectos de los fármacos , Ratas , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Osteogénesis/efectos de los fármacos , Masculino , Microtomografía por Rayos X , Células Cultivadas , Metacrilatos , Materiales Biocompatibles/farmacología
13.
J Periodontal Res ; 59(3): 530-541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501357

RESUMEN

OBJECTIVE: The purpose of this study is to investigate regenerative process by immunohistochemical analysis and evaluate periodontal tissue regeneration following a topical application of BDNF to inflamed 3-wall intra-bony defects. BACKGROUND: Brain-derived neurotrophic factor (BDNF) plays a role in the survival and differentiation of central and peripheral neurons. BDNF can regulate the functions of non-neural cells, osteoblasts, periodontal ligament cells, endothelial cells, as well as neural cells. Our previous study showed that a topical application of BDNF enhances periodontal tissue regeneration in experimental periodontal defects of dog and that BDNF stimulates the expression of bone (cementum)-related proteins and proliferation of human periodontal ligament cells. METHODS: Six weeks after extraction of mandibular first and third premolars, 3-wall intra-bony defects were created in mandibular second and fourth premolars of beagle dogs. Impression material was placed in all of the artificial defects to induce inflammation. Two weeks after the first operation, BDNF (25 and 50 µg/mL) immersed into atelocollagen sponge was applied to the defects. As a control, only atelocollagen sponge immersed in saline was applied. Two and four weeks after the BDNF application, morphometric analysis was performed. Localizations of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by immunohistochemical analysis. RESULTS: Two weeks after application of BDNF, periodontal tissue was partially regenerated. Immunohistochemical analyses revealed that cells on the denuded root surface were positive with OPN and PCNA. PCNA-positive cells were also detected in the soft connective tissue of regenerating periodontal tissue. Four weeks after application of BDNF, the periodontal defects were regenerated with cementum, periodontal ligament, and alveolar bone. Along the root surface, abundant OPN-positive cells were observed. Morphometric analyses revealed that percentage of new cementum length and percentage of new bone area of experimental groups were higher than control group and dose-dependently increased. CONCLUSION: These findings suggest that BDNF could induce cementum regeneration in early regenerative phase by stimulating proliferation of periodontal ligament cells and differentiation into periodontal tissue cells, resulting in enhancement of periodontal tissue regeneration in inflamed 3-wall intra-bony defects.


Asunto(s)
Pérdida de Hueso Alveolar , Factor Neurotrófico Derivado del Encéfalo , Cementogénesis , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Perros , Cementogénesis/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Osteopontina , Ligamento Periodontal/patología , Ligamento Periodontal/efectos de los fármacos , Masculino , Regeneración Tisular Guiada Periodontal/métodos , Regeneración Ósea/efectos de los fármacos , Cemento Dental/patología , Cemento Dental/efectos de los fármacos , Periodoncio/patología , Periodoncio/metabolismo , Mandíbula , Proliferación Celular/efectos de los fármacos
14.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822942

RESUMEN

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Asunto(s)
Regeneración Ósea , Grafito , Osteoprotegerina , Ligando RANK , Ratas Wistar , Grafito/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Ratas , Ligando RANK/metabolismo , Osteoprotegerina/metabolismo , Humanos , Materiales Biocompatibles/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Actinobacteria/metabolismo , Antibacterianos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos
15.
Phys Chem Chem Phys ; 26(18): 13875-13883, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660767

RESUMEN

Herein we report the synthesis of a ferroelectric composed of chitosan (C)/barium titanate (BT) nanoparticles (NPs) with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. FTIR and SEM measurements were performed to assess the mechanism of interaction between the C matrix and BT NPs and their correlation with the biological responses. The dielectric measurements of the as-prepared composites reveal that incorporation of 50% BT NPs in the chitosan matrix leads to a steady increase of the dielectric constant as compared with neat chitosan films. The ferroelectric behavior of the sample was confirmed by the values of the loss factor (0.21-0.003) in the analyzed frequency range (10-1-106 Hz). This behavior suggests that ferroelectric C/BT nanocomposites can act as an active material that promotes accelerated bone regeneration.


Asunto(s)
Compuestos de Bario , Regeneración Ósea , Quitosano , Titanio , Quitosano/química , Titanio/química , Compuestos de Bario/química , Regeneración Ósea/efectos de los fármacos , Nanocompuestos/química , Materiales Biocompatibles/química , Animales , Espectroscopía Infrarroja por Transformada de Fourier
16.
J Nanobiotechnology ; 22(1): 287, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797862

RESUMEN

Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.


Asunto(s)
Regeneración Ósea , Quitosano , Sistemas de Liberación de Medicamentos , Hidrogeles , Estructuras Metalorgánicas , Periodontitis , Periodontitis/tratamiento farmacológico , Hidrogeles/química , Regeneración Ósea/efectos de los fármacos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Quitosano/química , Quitosano/análogos & derivados , Ratones , Sistemas de Liberación de Medicamentos/métodos , Dextranos/química , Masculino , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Preparaciones de Acción Retardada/química , Humanos
17.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918787

RESUMEN

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Asunto(s)
Cementos para Huesos , Péptido Relacionado con Gen de Calcitonina , Fosfatos de Calcio , Osteogénesis , Porcinos Enanos , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cementos para Huesos/farmacología , Cementos para Huesos/química , Ratones , Porcinos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Columna Vertebral/cirugía , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Línea Celular , Magnesio/farmacología , Magnesio/química
18.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760744

RESUMEN

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Células Madre Mesenquimatosas , Nanopartículas , Animales , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Núcleo Celular/metabolismo , Curación de Fractura/efectos de los fármacos , Humanos , Proteínas de la Membrana
19.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750519

RESUMEN

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Osteosarcoma , Andamios del Tejido , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Conejos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células de Schwann/efectos de los fármacos , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Selenio/química , Selenio/farmacología
20.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849820

RESUMEN

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Asunto(s)
Bivalvos , Regeneración Ósea , Durapatita , Oro , Indoles , Macrófagos , Osteogénesis , Regeneración Ósea/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Animales , Ratones , Oro/química , Oro/farmacología , Bivalvos/química , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Indoles/química , Indoles/farmacología , Osteogénesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Polímeros/química , Polímeros/farmacología , Nanocompuestos/química , Nanopartículas del Metal/química , Osteoblastos/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA