Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900790

RESUMEN

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Asunto(s)
Óxido Nítrico , Oxidación-Reducción , Oxidorreductasas , Filogenia , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Archaea/metabolismo , Archaea/genética , Rhodothermus/metabolismo , Rhodothermus/enzimología , Rhodothermus/genética , Evolución Molecular , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
2.
Proteins ; 92(8): 984-997, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38641972

RESUMEN

Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases. It is important to know how different the GH13_47 enzymes are from other α-amylases. Rhodothermus marinus JCM9785, a thermophilic bacterium, possesses a gene for the GH13_47 enzyme, which is designated here as RmGH13_47A. Its structure has been predicted to be composed of seven domains: N1, N2, N3, A, B, C, and D. We constructed a plasmid encoding Gly266-Glu886, which contains the N3, A, B, and C domains and expressed the protein in Escherichia coli. The enzyme hydrolyzed starch and pullulan by a neopullulanase-type action. Additionally, the enzyme acted on maltotetraose, and saccharides with α-1,6-glucosidic linkages were observed in the products. Following the replacement of the catalytic residue Asp563 with Ala, the crystal structure of the variant D563A in complex with the enzymatic products from maltotetraose was determined; as a result, electron density for an α-1,6-branched pentasaccharide was observed in the catalytic pocket, and Ile762 and Asp763 interacted with the branched chain of the pentasaccharide. These findings suggest that RmGH13_47A is an α-amylase that prefers α-1,6-branched parts of starch to produce oligosaccharides.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Rhodothermus , alfa-Amilasas , Rhodothermus/enzimología , Rhodothermus/genética , alfa-Amilasas/química , alfa-Amilasas/metabolismo , alfa-Amilasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glucanos/metabolismo , Glucanos/química , Especificidad por Sustrato , Almidón/metabolismo , Almidón/química , Secuencia de Aminoácidos , Oligosacáridos/metabolismo , Oligosacáridos/química , Dominio Catalítico , Unión Proteica , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Dominios y Motivos de Interacción de Proteínas , Cristalografía por Rayos X , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clonación Molecular , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Sitios de Unión , Conformación Proteica en Hélice alfa , Maltosa/análogos & derivados
3.
Nature ; 552(7683): 132-136, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29186119

RESUMEN

Recent advances in enzyme engineering and design have expanded nature's catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus (Rma cyt c) were found to form carbon-boron bonds in the presence of borane-Lewis base complexes, through carbene insertion into boron-hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h-1, a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems.


Asunto(s)
Boro/química , Citocromos c/genética , Citocromos c/metabolismo , Evolución Molecular Dirigida , Escherichia coli/metabolismo , Hidrógeno/química , Ingeniería Metabólica , Rhodothermus/enzimología , Biocatálisis , Boro/metabolismo , Escherichia coli/genética , Hidrógeno/metabolismo , Enlace de Hidrógeno , Redes y Vías Metabólicas/genética , Estructura Molecular , Rhodothermus/genética , Estereoisomerismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35072600

RESUMEN

Novel thermophilic heterotrophic bacteria were isolated from the subsurface of the volcanic island Surtsey off the south coast of Iceland. The strains were isolated from tephra core and borehole fluid samples collected below 70 m depth. The Gram-negative bacteria were rod-shaped (0.3-0.4 µm wide, 1.5-7 µm long), aerobic, non-sporulating and non-motile. Optimal growth was observed at 70 °C, at pH 7-7.5 and with 1% NaCl. Phylogenetic analysis identified the strains as members of the genus Rhodothermus. The type strain, ISCAR-7401T, was genetically distinct from its closest relatives Rhodothermus marinus DSM 4252T and Rhodothermus profundi PRI 2902T based on 16S rRNA gene sequence similarity (95.81 and 96.01%, respectively), genomic average nucleotide identity (73.73 and 72.61%, respectively) and digital DNA-DNA hybridization (17.6 and 16.9%, respectively). The major fatty acids of ISCAR-7401T were iso-C17:0, anteiso-C15:0, anteiso-C17:0 and iso-C15:0 (>10 %). The major isoprenoid quinone was MK-7 while phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminophospholipid and a phospholipid were the predominant polar lipid components. Based on comparative chemotaxonomic, genomic and phylogenetic analyses, we propose that the isolated strain represents a novel species of the genus Rhodothermus with the name Rhodothermus bifroesti sp. nov. The type strain is ISCAR-7401T (=DSM 112103T=CIP 111906T).


Asunto(s)
Filogenia , Rhodothermus , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Islandia , Islas , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodothermus/citología , Rhodothermus/aislamiento & purificación , Análisis de Secuencia de ADN
5.
Proc Natl Acad Sci U S A ; 116(18): 8852-8858, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979809

RESUMEN

To reduce experimental effort associated with directed protein evolution and to explore the sequence space encoded by mutating multiple positions simultaneously, we incorporate machine learning into the directed evolution workflow. Combinatorial sequence space can be quite expensive to sample experimentally, but machine-learning models trained on tested variants provide a fast method for testing sequence space computationally. We validated this approach on a large published empirical fitness landscape for human GB1 binding protein, demonstrating that machine learning-guided directed evolution finds variants with higher fitness than those found by other directed evolution approaches. We then provide an example application in evolving an enzyme to produce each of the two possible product enantiomers (i.e., stereodivergence) of a new-to-nature carbene Si-H insertion reaction. The approach predicted libraries enriched in functional enzymes and fixed seven mutations in two rounds of evolution to identify variants for selective catalysis with 93% and 79% ee (enantiomeric excess). By greatly increasing throughput with in silico modeling, machine learning enhances the quality and diversity of sequence solutions for a protein engineering problem.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Evolución Molecular Dirigida , Aprendizaje Automático , Oxigenasas/genética , Rhodothermus/enzimología , Bibliotecas de Moléculas Pequeñas , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Oxigenasas/metabolismo , Conformación Proteica
6.
BMC Genomics ; 22(1): 652, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507539

RESUMEN

BACKGROUND: Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. RESULTS: Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. CONCLUSIONS: The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.


Asunto(s)
Compostaje , Metagenoma , Actinobacteria , Bacterias/genética , Rhodothermus
7.
Chemistry ; 27(56): 13998-14006, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34355437

RESUMEN

To protect their intracellular proteins, extremophile microorganisms synthesize molecules called compatible solutes. These molecules are the result of the attachment of a small negatively charged molecule to a sugar molecule. It has been found that these molecules, not only protect the microorganism against osmotic stress but also against other extreme conditions. They can also confer protection against extreme conditions to isolated enzymes from different organisms making them an exciting prospect for potential biotechnological applications. One of the most widespread compatible solute in hyperthermophile organisms is the molecule 2-O-α-D-mannosyl-D-glycerate (MG). In addition to confer protection to proteins against extreme conditions, MG was found to prevent Alzheimer's ß-amyloid aggregation and reduce α-synuclein fibril formation in Parkinson's disease. In this work we studied, using computational methods, the catalytic mechanism of the synthesis of MG by the enzyme mannosylglycerate synthase (MGS) from the thermophilic bacteria Rhodothermus marinus.


Asunto(s)
Biotecnología , Glicosiltransferasas , Manosiltransferasas , Rhodothermus
8.
Proc Natl Acad Sci U S A ; 115(28): 7308-7313, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946033

RESUMEN

Recently, heme proteins have been discovered and engineered by directed evolution to catalyze chemical transformations that are biochemically unprecedented. Many of these nonnatural enzyme-catalyzed reactions are assumed to proceed through a catalytic iron porphyrin carbene (IPC) intermediate, although this intermediate has never been observed in a protein. Using crystallographic, spectroscopic, and computational methods, we have captured and studied a catalytic IPC intermediate in the active site of an enzyme derived from thermostable Rhodothermus marinus (Rma) cytochrome c High-resolution crystal structures and computational methods reveal how directed evolution created an active site for carbene transfer in an electron transfer protein and how the laboratory-evolved enzyme achieves perfect carbene transfer stereoselectivity by holding the catalytic IPC in a single orientation. We also discovered that the IPC in Rma cytochrome c has a singlet ground electronic state and that the protein environment uses geometrical constraints and noncovalent interactions to influence different IPC electronic states. This information helps us to understand the impressive reactivity and selectivity of carbene transfer enzymes and offers insights that will guide and inspire future engineering efforts.


Asunto(s)
Proteínas Bacterianas/química , Evolución Molecular Dirigida , Metano/análogos & derivados , Porfirinas/química , Rhodothermus/enzimología , Transferasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Metano/química , Metano/metabolismo , Porfirinas/genética , Porfirinas/metabolismo , Rhodothermus/genética , Transferasas/genética , Transferasas/metabolismo
9.
J Am Chem Soc ; 141(25): 9798-9802, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31187993

RESUMEN

The introduction of fluoroalkyl groups into organic compounds can significantly alter pharmacological characteristics. One enabling but underexplored approach for the installation of fluoroalkyl groups is selective C( sp3)-H functionalization due to the ubiquity of C-H bonds in organic molecules. We have engineered heme enzymes that can insert fluoroalkyl carbene intermediates into α-amino C( sp3)-H bonds and enable enantiodivergent synthesis of fluoroalkyl-containing molecules. Using directed evolution, we engineered cytochrome P450 enzymes to catalyze this abiological reaction under mild conditions with total turnovers (TTN) up to 4070 and enantiomeric excess (ee) up to 99%. The iron-heme catalyst is fully genetically encoded and configurable by directed evolution so that just a few mutations to the enzyme completely inverted product enantioselectivity. These catalysts provide a powerful method for synthesis of chiral organofluorine molecules that is currently not possible with small-molecule catalysts.


Asunto(s)
Aminas/síntesis química , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Fluorocarburos/síntesis química , Alquilación , Bacillus megaterium/enzimología , Proteínas Bacterianas/genética , Biocatálisis , Carbono/química , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular Dirigida , Escherichia coli/enzimología , Hidrógeno/química , Prueba de Estudio Conceptual , Ingeniería de Proteínas , Rhodothermus/enzimología , Estereoisomerismo
10.
Chembiochem ; 20(18): 2360-2372, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31017712

RESUMEN

Lanthanide (Ln)-dependent methanol dehydrogenases (MDHs) have recently been shown to be widespread in methylotrophic bacteria. Along with the core MDH protein, XoxF, these systems contain two other proteins, XoxG (a c-type cytochrome) and XoxJ (a periplasmic binding protein of unknown function), about which little is known. In this work, we have biochemically and structurally characterized these proteins from the methyltroph Methylobacterium extorquens AM1. In contrast to results obtained in an artificial assay system, assays of XoxFs metallated with LaIII , CeIII , and NdIII using their physiological electron acceptor, XoxG, display Ln-independent activities, but the Km for XoxG markedly increases from La to Nd. This result suggests that XoxG's redox properties are tuned specifically for lighter Lns in XoxF, an interpretation supported by the unusually low reduction potential of XoxG (+172 mV). The X-ray crystal structure of XoxG provides a structural basis for this reduction potential and insight into the XoxG-XoxF interaction. Finally, the X-ray crystal structure of XoxJ reveals a large hydrophobic cleft and suggests a role in the activation of XoxF. These studies enrich our understanding of the underlying chemical principles that enable the activity of XoxF with multiple lanthanides in vitro and in vivo.


Asunto(s)
Oxidorreductasas de Alcohol/química , Proteínas Bacterianas/química , Grupo Citocromo c/química , Elementos de la Serie de los Lantanoides/química , Proteínas de Unión Periplasmáticas/química , Pruebas de Enzimas , Cinética , Metanol/química , Methylobacterium extorquens/enzimología , Oxidación-Reducción , Rhodothermus/enzimología , Saccharomyces cerevisiae/enzimología
11.
Protein Expr Purif ; 164: 105464, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31376486

RESUMEN

Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.


Asunto(s)
Proteínas Bacterianas/genética , Endo-1,4-beta Xilanasas/genética , Rhodothermus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rhodothermus/química , Rhodothermus/aislamiento & purificación , Rhodothermus/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
12.
Protein Expr Purif ; 164: 105478, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31421223

RESUMEN

A gene encoding 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) from the extremely thermophilic bacterium Rhodothermus obamensis STB05 was successfully cloned and expressed in Escherichia coli. Extracellular expression of the recombinant enzyme (R.o-GBE) was achieved with a yield of 1080 mg/L. Then it was purified and further characterized biochemically. R.o-GBE was optimally active at pH 7.0 and 65 °C. It remained stable at temperatures up to 80 °C and had a half-life at 85 °C of approximately 31 min. Far-UV circular dichroism and intrinsic fluorescence analyses revealed that high temperatures reduced its activity by changing the secondary and tertiary structure of R.o-GBE. The enzyme had broad pH stability between pH 3.0 and 11.0 at 4 °C, and preferred weakly acidic conditions at high temperatures. None of the metal ions enhanced the activity of R.o-GBE, but Ca2+ may be required for its activity. Its specific activity with amylopectin was 6651 U/mg, which is much higher than that reported for other GBEs. Its excellent thermostability, broad pH stability, and high specific activity make R.o-GBE highly suitable for industrial applications.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Proteínas Bacterianas/genética , Rhodothermus/genética , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodothermus/química , Rhodothermus/metabolismo
13.
Extremophiles ; 23(6): 735-745, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31522265

RESUMEN

This work presents an evaluation of batch, fed-batch, and sequential batch cultivation techniques for production of R. marinus DSM 16675 and its exopolysaccharides (EPSs) and carotenoids in a bioreactor, using lysogeny broth (LB) and marine broth (MB), respectively, in both cases supplemented with 10 g/L maltose. Batch cultivation using LB supplemented with maltose (LBmalt) resulted in higher cell density (OD620 = 6.6) than use of MBmalt (OD620 = 1.7). Sequential batch cultivation increased the cell density threefold (OD620 = 20) in LBmalt and eightfold (OD620 = 14) in MBmalt. In both single and sequential batches, the production of carotenoids and EPSs using LBmalt was detected in the exponential phase and stationary phase, respectively, while in MBmalt formation of both products was detectable in both the exponential and stationary phases of the culture. Heteropolymeric EPSs were produced with an overall volumetric productivity (QE) of 0.67 (mg/L h) in MBmalt and the polymer contained xylose. In LB, QE was lower (0.1 mg/L h) and xylose could not be detected in the composition of the produced EPSs. In conclusion, this study showed the importance of a process design and medium source for production of R. marinus DSM 16675 and its metabolites.


Asunto(s)
Reactores Biológicos , Rhodothermus/crecimiento & desarrollo , Carotenoides/metabolismo , Medios de Cultivo/química
14.
Angew Chem Int Ed Engl ; 58(10): 3138-3142, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30600873

RESUMEN

Chiral 1,2-amino alcohols are widely represented in biologically active compounds from neurotransmitters to antivirals. While many synthetic methods have been developed for accessing amino alcohols, the direct aminohydroxylation of alkenes to unprotected, enantioenriched amino alcohols remains a challenge. Using directed evolution, we have engineered a hemoprotein biocatalyst based on a thermostable cytochrome c that directly transforms alkenes to amino alcohols with high enantioselectivity (up to 2500 TTN and 90 % ee) under anaerobic conditions with O-pivaloylhydroxylamine as an aminating reagent. The reaction is proposed to proceed via a reactive iron-nitrogen species generated in the enzyme active site, enabling tuning of the catalyst's activity and selectivity by protein engineering.


Asunto(s)
Alquenos/química , Amino Alcoholes/química , Citocromos c/química , Rhodothermus/enzimología , Aminación , Biocatálisis , Hidroxilación , Modelos Moleculares , Estereoisomerismo
15.
Biochem Biophys Res Commun ; 497(1): 368-373, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29432740

RESUMEN

Substrate-binding proteins (SBPs) bind to specific ligands and are associated with membrane protein complexes for transport or signal transduction. Most SBPs recognize substrates by the hinge motion between two distinct α/ß domains. However, short SBP motifs are often observed in protein databases, which are located around methyl-accepting chemotaxis protein genes, but structural and functional studies have yet to be performed. Here, we report the crystal structure of an unusually small SBP from Rhodothermus marinus (named as RmSBP) at 1.9 Å. This protein is composed of a single α/ß-domain, unlike general SBPs that have two distinct domains. RmSBP exhibits a high structural similarity to the C-terminal domain of the previously reported amino acid bound SBPs, while it does not contain an N-terminal domain for substrate recognition. As a result of the structural comparison analysis, RmSBP has a putative SBP that is different from the previously reported SBP. Our results provide insight into a new class of substrate recognition mechanism by the mini SBP protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Modelos Químicos , Modelos Moleculares , Rhodothermus/química , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalización , Unión Proteica , Conformación Proteica , Dominios Proteicos , Análisis de Secuencia de Proteína , Especificidad por Sustrato
16.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 292-306, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29155107

RESUMEN

Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop ß6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.


Asunto(s)
Proteínas Bacterianas/genética , Endo-1,4-beta Xilanasas/química , Rhodothermus/enzimología , Proteínas Bacterianas/química , Endo-1,4-beta Xilanasas/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Rhodothermus/genética
17.
Extremophiles ; 22(3): 553-562, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29523972

RESUMEN

YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960-962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rhodothermus/enzimología , Proteínas Ribosómicas/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodothermus/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Homología de Secuencia
18.
Phys Chem Chem Phys ; 20(5): 3172-3183, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29034950

RESUMEN

A new group of microbial rhodopsins named xenorhodopsins (XeR), which are closely related to the cyanobacterial Anabaena sensory rhodopsin, show a light-driven "inward" proton transport activity, as reported for one representative of this group from Parvularcula oceani (PoXeR). In this study, we functionally and spectroscopically characterized a new member of the XeR clade from a marine bacterium Rubricoccus marinus SG-29T (RmXeR). Escherichia coli cells expressing recombinant RmXeR showed a light-induced alkalization of the cell suspension, which was strongly impaired by a protonophore, suggesting that RmXeR is a light-driven "inward" proton pump as is PoXeR. The spectroscopic properties of purified RmXeR were investigated and compared with those of PoXeR and a light-driven "outward" proton pump, bacteriorhodopsin (BR) from the archaeon Halobacterium salinarum. Action spectroscopy revealed that RmXeR with all-trans retinal is responsible for the light-driven inward proton transport activity, but not with 13-cis retinal. From pH titration experiments and mutational analysis, we estimated the pKa values for the protonated Schiff base of the retinal chromophore and its counterion as 11.1 ± 0.07 and 2.1 ± 0.07, respectively. Of note, the direction of both the retinal composition change upon light-dark adaptation and the acid-induced spectral shift was opposite that of BR, which is presumably related to the opposite directions of ion transport (from outside to inside for RmXeR and from inside to outside for BR). Flash photolysis experiments revealed the appearances of three intermediates (L, M and O) during the photocycle. The proton uptake and release were coincident with the formation and decay of the M intermediate, respectively. Together with associated findings from other microbial rhodopsins, we propose a putative model for the inward proton transport mechanism of RmXeR.


Asunto(s)
Rodopsinas Microbianas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Escherichia coli , Halobacterium/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de la radiación , Luz , Filogenia , Protones , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsinas Microbianas/clasificación , Rodopsinas Microbianas/genética , Rhodothermus , Bases de Schiff/química , Bases de Schiff/metabolismo , Espectrofotometría
19.
Molecules ; 23(10)2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275414

RESUMEN

Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of ß-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from d-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed. First, a mutant library of RmCE was created to try and increase the activity on monosaccharide substrates. Next, two residues from RmCE were introduced in the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) (S99M/Q371F), increasing the kcat twofold.


Asunto(s)
Carbohidrato Epimerasas/química , Galactosa/química , Lactonas/química , Rhodothermus/enzimología , Carbohidrato Epimerasas/genética , Catálisis , Celobiosa/química , Simulación por Computador , Biblioteca de Genes , Hexosas/química , Isomerismo , Cinética , Monosacáridos/química , Mutación , Oligosacáridos/química , Especificidad por Sustrato
20.
Angew Chem Int Ed Engl ; 57(16): 4143-4148, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29064156

RESUMEN

Tailor-made: Discussed herein is the ability to adapt biology's mechanisms for innovation and optimization to solving problems in chemistry and engineering. The evolution of nature's enzymes can lead to the discovery of new reactivity, transformations not known in biology, and reactivity inaccessible by small-molecule catalysts.


Asunto(s)
Boranos/metabolismo , Citocromos c/metabolismo , Evolución Molecular Dirigida , Ingeniería de Proteínas , Silanos/metabolismo , Biocatálisis , Boranos/química , Citocromos c/química , Ensayos Analíticos de Alto Rendimiento , Rhodothermus/enzimología , Silanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA