Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.918
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 99(3): 1575-1653, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31215303

RESUMEN

The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.


Asunto(s)
Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Riñón/fisiología , Riñón/fisiopatología , Animales , Humanos , Enfermedades Raras
2.
N Engl J Med ; 388(2): 117-127, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36331190

RESUMEN

BACKGROUND: The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. METHODS: We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m2 of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m2 with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to <10 ml per minute per 1.73 m2, a sustained decrease in eGFR of ≥40% from baseline, or death from renal causes) or death from cardiovascular causes. RESULTS: A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P<0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P = 0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. CONCLUSIONS: Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo. (Funded by Boehringer Ingelheim and others; EMPA-KIDNEY ClinicalTrials.gov number, NCT03594110; EudraCT number, 2017-002971-24.).


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Compuestos de Bencidrilo/efectos adversos , Compuestos de Bencidrilo/uso terapéutico , Enfermedades Cardiovasculares/inducido químicamente , Creatinina/orina , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Riñón/fisiopatología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
3.
Genes Dev ; 32(11-12): 781-793, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29891559

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder caused by mutations in PKD1 or PKD2 and affects one in 500-1000 humans. Limited treatment is currently available for ADPKD. Here we identify the Hippo signaling effector YAP and its transcriptional target, c-Myc, as promoters of cystic kidney pathogenesis. While transgenic overexpression of YAP promotes proliferation and tubule dilation in mouse kidneys, loss of YAP/TAZ or c-Myc suppresses cystogenesis in a mouse ADPKD model resulting from Pkd1 deficiency. Through a comprehensive kinase inhibitor screen based on a novel three-dimensional (3D) culture of Pkd1 mutant mouse kidney cells, we identified a signaling pathway involving the RhoGEF (guanine nucleotide exchange factor) LARG, the small GTPase RhoA, and the RhoA effector Rho-associated kinase (ROCK) as a critical signaling module between PKD1 and YAP. Further corroborating its physiological importance, inhibition of RhoA signaling suppresses cystogenesis in 3D culture of Pkd1 mutant kidney cells as well as Pkd1 mutant mouse kidneys in vivo. Taken together, our findings implicate the RhoA-YAP-c-Myc signaling axis as a critical mediator and potential drug target in ADPKD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Riñón/fisiopatología , Fosfoproteínas/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/fisiopatología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Riñón/citología , Riñón/patología , Ratones , Fosfoproteínas/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Señalizadoras YAP , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
4.
J Biol Chem ; 300(5): 107231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537700

RESUMEN

Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Previous studies established that LECT2 fibrillogenesis is accelerated by the loss of its bound zinc ion and stirring/shaking. These forms of agitation create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of narrow channels-drives LECT2 fibrillogenesis. To mimic blood flow through the kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 µm in width. Shear was particularly pronounced at the branch points and in the smallest capillaries. Aggregation was induced within 24 h by shear levels that were in the physiological range and well below those required to unfold globular proteins such as LECT2. EM images suggested the resulting fibril ultrastructures were different when generated by laminar flow shear versus shaking/stirring. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both the size and the density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.


Asunto(s)
Neuropatías Amiloides , Péptidos y Proteínas de Señalización Intercelular , Riñón , Flujo Plasmático Renal , Humanos , Amiloide/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/irrigación sanguínea , Riñón/fisiopatología , Estrés Mecánico , Neuropatías Amiloides/metabolismo , Neuropatías Amiloides/fisiopatología , Resistencia al Corte , Agregado de Proteínas
5.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858783

RESUMEN

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Polimorfismo de Nucleótido Simple/genética , Riñón/fisiopatología , Riñón/patología , Predisposición Genética a la Enfermedad , Biomarcadores/sangre , Tasa de Filtración Glomerular/genética , Sitios de Carácter Cuantitativo/genética , Ácido Úrico/sangre
6.
Annu Rev Physiol ; 83: 429-450, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33566672

RESUMEN

Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.


Asunto(s)
Vías Aferentes/fisiología , Hipertensión/fisiopatología , Riñón/inervación , Riñón/fisiología , Animales , Ablación por Catéter/métodos , Humanos , Riñón/fisiopatología
7.
Annu Rev Physiol ; 83: 39-58, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33074771

RESUMEN

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.


Asunto(s)
Insuficiencia Cardíaca/terapia , Simpatectomía/métodos , Animales , Progresión de la Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos , Riñón/fisiopatología
8.
J Lipid Res ; 65(6): 100552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704028

RESUMEN

Circulating ceramide levels are dysregulated in kidney disease. However, their associations with rapid decline in kidney function (RDKF) and end-stage kidney disease (ESKD) in patients with type 2 diabetes (T2D) are unknown. In this prospective study of 1746 T2D participants, we examined the association of plasma ceramide Cer16:0, Cer18:0, Cer24:0, and Cer24:1 with RDKF, defined as an estimated glomerular filtration rate (eGFR) decline of 5 ml/min/1.73 m2 per year or greater, and ESKD defined as eGFR <15/min/1.73 m2 for at least 3 months, on dialysis or renal death at follow-up. During a median follow-up period of 7.7 years, 197 patients experienced RDKF. Ceramide Cer24:0 (odds ratio [OR] = 0.71, 95% CI 0.56-0.90) and ratios Cer16:0/Cer24:0 (OR = 3.54 [1.70-7.35]), Cer18:0/Cer24:0 (OR = 1.89 [1.10-3.25]), and Cer24:1/Cer24:0 (OR = 4.01 [1.93-8.31]) significantly associated with RDKF in multivariable analysis; 124 patients developed ESKD. The ratios Cer16:0/Cer24:0 (hazard ratio [HR] = 3.10 [1.44-6.64]) and Cer24:1/Cer24:0 (HR = 4.66 [1.93-11.24]) significantly associated with a higher risk of ESKD. The Cer24:1/Cer24:0 ratio improved risk discrimination for ESKD beyond traditional risk factors by small but statistically significant margin (Harrell C-index difference: 0.01; P = 0.022). A high ceramide risk score also associated with RDKF (OR = 2.28 [1.26-4.13]) compared to lower risk score. In conclusion, specific ceramide levels and their ratios are associated with RDKF and conferred an increased risk of ESKD, independently of traditional risk factors, including baseline renal functions in patients with T2D.


Asunto(s)
Ceramidas , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Ceramidas/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tasa de Filtración Glomerular , Estudios Prospectivos , Riñón/fisiopatología , Fallo Renal Crónico/sangre
9.
Diabetologia ; 67(7): 1283-1294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647650

RESUMEN

AIMS/HYPOTHESIS: Non-adherence to medication is a frequent barrier in the treatment of patients with type 2 diabetes mellitus, potentially limiting the effectiveness of evidence-based treatments. Previous studies have mostly relied on indirect adherence measures to analyse outcomes based on adherence. The aim of this study was to use LC-MS/MS in urine-a non-invasive, direct and objective measure-to assess non-adherence to cardiometabolic drugs and analyse its association with kidney and cardiovascular outcomes. METHODS: This cohort study includes 1125 participants from the PROVALID study, which follows patients with type 2 diabetes mellitus at the primary care level. Baseline urine samples were tested for 79 cardiometabolic drugs and metabolites thereof via LC-MS/MS. An individual was classified as totally adherent if markers for all drugs were detected, partially non-adherent when at least one marker for one drug was detected, and totally non-adherent if no markers for any drugs were detected. Non-adherence was then analysed in the context of cardiovascular (composite of myocardial infarction, stroke and cardiovascular death) and kidney (composite of sustained 40% decline in eGFR, sustained progression of albuminuria, kidney replacement therapy and death from kidney failure) outcomes. RESULTS: Of the participants, 56.3% were totally adherent, 42.0% were partially non-adherent, and 1.7% were totally non-adherent to screened cardiometabolic drugs. Adherence was highest to antiplatelet and glucose-lowering agents and lowest to lipid-lowering agents. Over a median (IQR) follow-up time of 5.10 (4.12-6.12) years, worse cardiovascular outcomes were observed with non-adherence to antiplatelet drugs (HR 10.13 [95% CI 3.06, 33.56]) and worse kidney outcomes were observed with non-adherence to antihypertensive drugs (HR 1.98 [95% CI 1.37, 2.86]). CONCLUSIONS/INTERPRETATION: This analysis shows that non-adherence to cardiometabolic drug regimens is common in type 2 diabetes mellitus and negatively affects kidney and cardiovascular outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cumplimiento de la Medicación , Espectrometría de Masas en Tándem , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/orina , Masculino , Femenino , Persona de Mediana Edad , Anciano , Cromatografía Liquida/métodos , Enfermedades Cardiovasculares/orina , Enfermedades Cardiovasculares/tratamiento farmacológico , Estudios de Cohortes , Riñón/metabolismo , Riñón/fisiopatología , Riñón/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Cromatografía Líquida con Espectrometría de Masas
10.
Am J Physiol Renal Physiol ; 326(5): F768-F779, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450435

RESUMEN

Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.


Asunto(s)
Enfermedades Renales , Mitocondrias , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Renales/fisiopatología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Animales , Riñón/metabolismo , Riñón/fisiopatología , Riñón/patología , Metabolismo Energético , Autofagia , Dinámicas Mitocondriales , Mitofagia , Respuesta de Proteína Desplegada , Biogénesis de Organelos
11.
Am J Physiol Renal Physiol ; 326(6): F894-F916, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634137

RESUMEN

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/psicología , Insuficiencia Renal Crónica/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Humanos , Ratones , Pez Cebra , Cognición , Ratas , Riñón/fisiopatología , Riñón/metabolismo
12.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660712

RESUMEN

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Asunto(s)
Nefropatías Diabéticas , Riñón , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Riñón/fisiopatología , Riñón/diagnóstico por imagen , Ratas , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/diagnóstico por imagen , Circulación Renal , Humanos , Homeostasis/fisiología
13.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511219

RESUMEN

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Asunto(s)
Lesión Renal Aguda , Riñón , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Masculino , Femenino , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Riñón/fisiopatología , Riñón/patología , Riñón/metabolismo , Factores Sexuales , Obesidad/complicaciones , Obesidad/fisiopatología , Dieta Alta en Grasa , Embarazo , Lipocalina 2/metabolismo , Obesidad Materna/metabolismo , Obesidad Materna/complicaciones , Obesidad Materna/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Ratones , Factores de Riesgo , Modelos Animales de Enfermedad , Biomarcadores/sangre
14.
Am J Physiol Renal Physiol ; 326(5): F737-F750, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482554

RESUMEN

Chronic angiotensin II (ANG II) infusion is an experimental model that induces hypertension in rodents. The natriuresis, diuresis, and blood pressure responses differ between males and females. This is perhaps not unexpected, given the rodent kidney, which plays a key role in blood pressure regulation, exhibits marked sex differences. Under normotensive conditions, compared with males, the female rat nephron exhibits lower Na+/H+ exchanger 3 (NHE3) activity along the proximal tubule but higher Na+ transporter activities along the distal segments. ANG II infusion-induced hypertension induces a pressure natriuretic response that reduces NHE3 activity and shifts Na+ transport capacity downstream. The goals of this study were to apply a computational model of epithelial transport along a rat nephron 1) to understand how a 14-day ANG II infusion impacts segmental electrolyte transport in male and female rat nephrons and 2) to identify and explain any sex differences in the effects of loop diuretics, thiazide diuretics, and K+-sparing diuretics. Model simulations suggest that the NHE3 downregulation in the proximal tubule is a major contributor to natriuresis and diuresis in hypertension, with the effects stronger in males. All three diuretics are predicted to induce stronger natriuretic and diuretic effects under hypertension compared with normotension, with relative increases in sodium excretion higher in hypertensive females than in males. The stronger natriuretic responses can be explained by the downstream shift of Na+ transport load in hypertension and by the larger distal transport load in females, both of which limit the ability of the distal segments to further elevate their Na+ transport.NEW & NOTEWORTHY Sex differences in the prevalence of hypertension are found in human and animal models. The kidney, which regulates blood pressure, exhibits sex differences in morphology, hemodynamics, and membrane transporter distributions. This computational modeling study provides insights into how the sexually dimorphic responses to a 14-day angiotensin II infusion differentially impact segmental electrolyte transport in rats. Simulations of diuretic administration explain how the natriuretic and diuretic effects differ between normotension and hypertension and between the sexes.


Asunto(s)
Angiotensina II , Hipertensión , Natriuresis , Intercambiador 3 de Sodio-Hidrógeno , Animales , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Femenino , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Natriuresis/efectos de los fármacos , Diuréticos/farmacología , Presión Sanguínea/efectos de los fármacos , Factores Sexuales , Simulación por Computador , Sodio/metabolismo , Ratas , Inhibidores de los Simportadores del Cloruro de Sodio/farmacología , Caracteres Sexuales , Modelos Animales de Enfermedad , Diuresis/efectos de los fármacos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/fisiopatología
15.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779755

RESUMEN

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Asunto(s)
Diabetes Mellitus Experimental , Canales Epiteliales de Sodio , Potasio en la Dieta , Potasio , Animales , Diabetes Mellitus Experimental/metabolismo , Potasio/metabolismo , Potasio/orina , Masculino , Potasio en la Dieta/metabolismo , Canales Epiteliales de Sodio/metabolismo , Ratones Endogámicos C57BL , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/fisiopatología , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/fisiopatología , Hipopotasemia/metabolismo , Amilorida/farmacología , Eliminación Renal/efectos de los fármacos , Homeostasis , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Glucósidos/farmacología , Estreptozocina , Compuestos de Bencidrilo , Transportador 2 de Sodio-Glucosa
16.
Kidney Int ; 105(6): 1159-1161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777399

RESUMEN

Measurement of glomerular filtration rate (GFR) is crucial in assessing kidney function status. Estimating GFR using clearance methodologies is cumbersome, as plasma and urinary concentrations and timed urine collections are required. Recently, a transcutaneous sensor has been developed whereby the rate of renal washout of a fluorescent marker administered intravenously allows calculation of GFR. The challenge is to ensure that the values of GFR obtained using the washout approach are in accord with those obtained conventionally.


Asunto(s)
Tasa de Filtración Glomerular , Humanos , Colorantes Fluorescentes/administración & dosificación , Riñón/fisiopatología , Riñón/fisiología , Pruebas de Función Renal/métodos , Pruebas de Función Renal/normas
17.
Kidney Int ; 105(6): 1212-1220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514000

RESUMEN

Accurate assessment of the glomerular filtration rate (GFR) is crucial for researching kidney disease in rats. Although validation of methods that assess GFR is crucial, large-scale comparisons between different methods are lacking. Both transcutaneous GFR (tGFR) and a newly developed estimated GFR (eGFR) equation by our group provide a low-invasive approach enabling repeated measurements. The tGFR is a single bolus method using FITC-labeled sinistrin to measure GFR based on half-life of the transcutaneous signal, whilst the eGFR is based on urinary sinistrin clearance. Here, we retrospectively compared tGFR, using both 1- and 3- compartment models (tGFR_1c and tGFR_3c, respectively) to the eGFR in a historic cohort of 43 healthy male rats and 84 male rats with various models of chronic kidney disease. The eGFR was on average considerably lower than tGFR-1c and tGFR-3c (mean differences 855 and 216 µL/min, respectively) and only 20 and 47% of measurements were within 30% of each other, respectively. The relative difference between eGFR and tGFR was highest in rats with the lowest GFR. Possible explanations for the divergence are problems inherent to tGFR, such as technical issues with signal measurement, description of the signal kinetics, and translation of half-life to tGFR, which depends on distribution volume. The unknown impact of isoflurane anesthesia used in determining mGFR remains a limiting factor. Thus, our study shows that there is a severe disagreement between GFR measured by tGFR and eGFR, stressing the need for more rigorous validation of the tGFR and possible adjustments to the underlying technique.


Asunto(s)
Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Insuficiencia Renal Crónica , Animales , Masculino , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/diagnóstico , Ratas , Riñón/fisiopatología , Ratas Sprague-Dawley , Estudios Retrospectivos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/administración & dosificación , Reproducibilidad de los Resultados , Eliminación Renal/fisiología , Fluoresceínas , Oligosacáridos
18.
Kidney Int ; 105(6): 1263-1278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38286178

RESUMEN

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.


Asunto(s)
Progresión de la Enfermedad , Tasa de Filtración Glomerular , Riñón , Medicina de Precisión , Insuficiencia Renal Crónica , Transcriptoma , Humanos , Medicina de Precisión/métodos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/fisiopatología , Persona de Mediana Edad , Femenino , Masculino , Riñón/patología , Riñón/fisiopatología , Anciano , Biopsia , Adulto , Redes Neurales de la Computación , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Aprendizaje Automático no Supervisado
19.
Kidney Int ; 106(1): 136-144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697479

RESUMEN

People with human immunodeficiency virus (HIV) are at risk for chronic kidney disease (CKD) due to HIV and antiretroviral therapy (ART) nephrotoxicity. Immediate ART initiation reduces mortality and is now the standard of care, but the long-term impact of prolonged ART exposure on CKD is unknown. To evaluate this, the Strategic Timing of Antiretroviral Treatment (START) trial randomized 4,684 ART-naïve adults with CD4 cell count under 500 cells/mm3 to immediate versus deferred ART. We previously reported a small but statistically significantly greater decline in estimated glomerular filtration rate (eGFR) over a median of 2.1 years in participants randomized to deferred versus immediate ART. Here, we compare the incidence of CKD events and changes in eGFR and urine albumin/creatinine ratio (UACR) in participants randomized to immediate versus deferred ART during extended follow-up. Over a median of 9.3 years, eight participants experienced kidney failure or kidney-related death, three in the immediate and five in the deferred ART arms, respectively. Over a median of five years of more comprehensive follow-up, the annual rate of eGFR decline was 1.19 mL/min/1.73m2/year, with no significant difference between treatment arms (difference deferred - immediate arm 0.055; 95% confidence interval -0.106, 0.217 mL/min/1.73m2). Results were similar in models adjusted for baseline covariates associated with CKD, including UACR and APOL1 genotype. Similarly, there was no significant difference between treatment arms in incidence of confirmed UACR 30 mg/g or more (odds ratio 1.13; 95% confidence interval 0.85, 1.51). Thus, our findings provide the most definitive evidence to date in support of the long-term safety of early ART with respect to kidney health.


Asunto(s)
Tasa de Filtración Glomerular , Infecciones por VIH , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Tasa de Filtración Glomerular/efectos de los fármacos , Persona de Mediana Edad , Adulto , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Factores de Tiempo , Incidencia , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Riñón/fisiopatología , Riñón/efectos de los fármacos , Recuento de Linfocito CD4 , Albuminuria/epidemiología , Tiempo de Tratamiento , Creatinina/sangre , Creatinina/orina , Esquema de Medicación , Resultado del Tratamiento , Factores de Riesgo , Apolipoproteína L1/genética
20.
J Urol ; 211(6): 775-783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457776

RESUMEN

PURPOSE: Accurately predicting new baseline glomerular filtration rate (NBGFR) after radical nephrectomy (RN) can improve counseling about RN vs partial nephrectomy. Split renal function (SRF)-based models are optimal, and differential parenchymal volume analysis (PVA) is more accurate than nuclear renal scans (NRS) for this purpose. However, there are minimal data regarding the limitations of PVA. Our objective was to identify patient-/tumor-related factors associated with PVA inaccuracy. MATERIALS AND METHODS: Five hundred and ninety-eight RN patients (2006-2021) with preoperative CT/MRI were retrospectively analyzed, with 235 also having NRS. Our SRF-based model to predict NBGFR was: 1.25 × (GlobalGFRPre-RN × SRFContralateral), where GFR indicates glomerular filtration rate, with SRF determined by PVA or NRS, and with 1.25 representing the median renal functional compensation in adults. Accuracy of predicted NBGFR within 15% of observed was evaluated in various patient/tumor cohorts using multivariable logistic regression analysis. RESULTS: PVA and NRS accuracy were 73%/52% overall, and 71%/52% in patients with both studies (n = 235, P < .001), respectively. PVA inaccuracy independently associated with pyelonephritis, hydronephrosis, renal vein thrombosis, and infiltrative features (all P < .03). Ipsilateral hydronephrosis and renal vein thrombosis associated with PVA underprediction, while contralateral hydronephrosis and increased age associated with PVA overprediction (all P < .01). NRS inaccuracy was more common and did not associate with any of these conditions. Even among cohorts where PVA inaccuracy was observed (22% of our patients), there was no significant difference in the accuracies of NRS- and PVA-based predictions. CONCLUSIONS: PVA was more accurate for predicting NBGFR after RN than NRS. Inaccuracy of PVA correlated with factors that distort the parenchymal volume/function relationship or alter renal functional compensation. NRS inaccuracy was more common and unpredictable, likely reflecting the inherent inaccuracy of NRS. Awareness of cohorts where PVA is less accurate can help guide clinical decision-making.


Asunto(s)
Tasa de Filtración Glomerular , Neoplasias Renales , Riñón , Nefrectomía , Humanos , Nefrectomía/métodos , Nefrectomía/efectos adversos , Tasa de Filtración Glomerular/fisiología , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Neoplasias Renales/cirugía , Neoplasias Renales/patología , Anciano , Riñón/fisiopatología , Riñón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética/métodos , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA