Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724946

RESUMEN

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Asunto(s)
Nitrógeno , Hojas de la Planta , Hojas de la Planta/fisiología , Hojas de la Planta/genética , Nitrógeno/metabolismo , Sasa/genética , Sasa/fisiología , Poaceae/genética , Poaceae/fisiología , Fósforo/metabolismo , Filogenia , Teorema de Bayes
2.
Physiol Plant ; 176(4): e14444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005134

RESUMEN

Bamboo, renowned as the fastest-growing plant globally, matures within an astonishingly short period of 40-50 days from shoots, reaching heights of 10-20 meters. Moreover, it can be harvested for various uses within 3-5 years. Bamboo exhibits exceptional mechanical properties, characterized by high hardness and flexibility, largely attributed to its lignin content. Phenylalanine ammonia-lyase (PAL) catalyzes the crucial initial step in lignin biosynthesis, but its precise role in bamboo lignification processes remains elusive. Thus, elucidating the functions of PAL genes in bamboo lignification processes is imperative for understanding its rapid growth and mechanical strength. Here, we systematically identified and classified PAL genes in Moso bamboo, ensuring nomenclature consistency across prior studies. Subsequently, we evaluated PAL gene expression profiles using publicly available transcriptome data. The downregulation of PePALs expression in Moso bamboo through in planta gene editing resulted in a decrease in PAL activity and a subsequent reduction in lignin content. In contrast, overexpression of PePAL led to enhanced PAL activity and an increase in lignin content. These findings highlight the critical role of PAL in the lignin biosynthesis process of Moso bamboo, which will help to unravel the mechanism underpinning bamboo's rapid growth and mechanical strength, with a specific emphasis on elucidating the functions of PAL genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Lignina/biosíntesis , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sasa/genética , Sasa/metabolismo , Sasa/enzimología
3.
J Pharmacol Sci ; 154(3): 148-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395515

RESUMEN

Acute kidney injury (AKI), a common complication in hospitalized patients, is associated with high morbidity and mortality rates. However, there are currently no approved or effective therapeutics for AKI. AKI is primarily caused by ischemia/reperfusion (I/R) injury, with oxidative stress from reactive oxygen species (ROS) being a major contributor. This study aimed to evaluate the efficacy of an alkaline extract of the leaves of Sasa sp. (SE) using mouse renal I/R injury and hypoxia/reoxygenation (H/R) models in NRK-52E cells. Renal function parameters were measured, and histopathological evaluations were performed to assess the efficacy of SE. In addition, to determine the mechanisms underlying the effects of SE on renal I/R injury, its effects on malondialdehyde (MDA) of oxidative stress and interleukin (IL)-6 and IL-1ß of inflammatory cytokines were evaluated. SE (0.03, 0.3, and 3 g/kg) improved renal function in a dose-dependent manner. In addition, SE ameliorated tubular injury and, reduced IL-6, IL-1ß and MDA. Also, SE ameliorated cell death, ROS production, and inflammatory cytokine production in H/R-exposed NRK-52E cells. SE showed antioxidant and anti-inflammatory activities in the AKI. These results indicate the potential of SE as a medicinal compound for the prevention and treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Sasa , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Sasa/metabolismo , Lesión Renal Aguda/etiología , Estrés Oxidativo , Riñón/patología , Daño por Reperfusión/metabolismo
4.
Ecotoxicol Environ Saf ; 271: 115969, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219621

RESUMEN

Phytoremediation is an effective way to remediate metal-contaminated soils. During phytoremediation, plants immobilize heavy metals through the roots to reduce the mobility, toxicity and dispersal of the metals, and the changes in the activity of the roots are often accompanied by changes in the rhizosphere ecosystems, in which rhizobacteria are essential components and interact with roots to maintain the stability of the rhizosphere ecosystem and improve soil health. In this study, the phytoremediation potential of Sasa argenteostriata (Regel) E.G. Camu and the response of rhizobacteria were revealed with different levels of lead-zinc tailing contamination (Pb, Zn, and Cd concentrations of 1197.53, 3243.40, and 185.44 mg/kg for M1 and 2301.71, 6087.95, and 364.00 mg/kg for M2, respectively). The BCF of Sasa argenteostriata increased with increasing soil pollution, and the BCFPb, BCFZn, and BCFCd were 0.19, 0.27, and 0.08, respectively, under the M2 treatment; in contrast, the TF decreased with increasing soil pollution, and the TFPb, TFZn, and TFCd were 0.39, 0.85, and 0.07, respectively, under the M1 treatment. The mobility of Pb in the rhizosphere was higher than that of Zn and Cd, and the percentage of residual (Res) Zn and Cd in the rhizosphere increased, while the acid-soluble (Aci) Pb was significantly higher, leading to obvious uptake of Pb by the roots. Correlation analysis showed that Sasa argenteostriata affected the rhizobacterial community by changing the rhizosphere soil pH, the contents of organic matter and NRFM, and bacteria such as Proteobacteria and MND1, which are highly resistant to heavy metals (HMs), became the dominant species in the community. Further PICRUSt2 analysis showed that reducing metal transport across the membranes and increasing the efficiency of cellular reproduction were the main metabolic mechanisms of bacterial tolerance to HMs. Overall, the roots of Sasa argenteostriata were able to immobilize more heavy metals in PbZn tailing-contaminated soil, reducing the toxicity of HMs in the soil, and then influencing the rhizobacteria to change the community structure and metabolism mechanism to adapt to the HM-contaminated environment, and the soil fertility was increased, which together promoted the health and stability of the soil. This study is the first to illustrate the phytoremediation potential and response of the rhizobacterial community of Sasa argenteostriata under multimetal contamination of PbZn tailings. The results of the study provide some guidance for the practice of lead-zinc tailing-phytoremediation and soil health.


Asunto(s)
Metales Pesados , Sasa , Contaminantes del Suelo , Zinc/análisis , Sasa/metabolismo , Cadmio/metabolismo , Ecosistema , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Biodegradación Ambiental , Plantas/metabolismo , Suelo/química
5.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000814

RESUMEN

Extracting moso bamboo parameters from single-source point cloud data has limitations. In this article, a new approach for extracting moso bamboo parameters using airborne laser scanning (ALS) and terrestrial laser scanning (TLS) point cloud data is proposed. Using the field-surveyed coordinates of plot corner points and the Iterative Closest Point (ICP) algorithm, the ALS and TLS point clouds were aligned. Considering the difference in point distribution of ALS, TLS, and the merged point cloud, individual bamboo plants were segmented from the ALS point cloud using the point cloud segmentation (PCS) algorithm, and individual bamboo plants were segmented from the TLS and the merged point cloud using the comparative shortest-path (CSP) method. The cylinder fitting method was used to estimate the diameter at breast height (DBH) of the segmented bamboo plants. The accuracy was calculated by comparing the bamboo parameter values extracted by the above methods with reference data in three sample plots. The comparison results showed that by using the merged data, the detection rate of moso bamboo plants could reach up to 97.30%; the R2 of the estimated bamboo height was increased to above 0.96, and the root mean square error (RMSE) decreased from 1.14 m at most to a range of 0.35-0.48 m, while the R2 of the DBH fit was increased to a range of 0.97-0.99, and the RMSE decreased from 0.004 m at most to a range of 0.001-0.003 m. The accuracy of moso bamboo parameter extraction was significantly improved by using the merged point cloud data.


Asunto(s)
Algoritmos , Sasa , Rayos Láser , Poaceae
6.
J Environ Manage ; 352: 120058, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38219671

RESUMEN

Biochar has exceeded expectations for heavy metal immobilization and has been prepared from widely available sources and inexpensive materials. In this research, coconut shell biochar (CSB), bamboo biochar (BC), magnetic coconut shell charcoal (MCSB), and magnetic bamboo biochar (MBC) were manufactured via co-pyrolysis, and their adsorption properties were tested. The pseudo-secondary (R2 = 0.980-0.985) adsorption kinetic fittings for the four biochas were superior to the pseudo-primary kinetics (R2 = 0.969-0.982). Unmodified biochar adsorption isotherms were more consistent with the Freundlich model, while magnetic biochar fitted Langmuir models better. The maximum adsorption capacity of MCSB for Cu(Ⅱ) reached 371.50 mg g-1. The adsorption mechanisms quantitatively analysis of the biochar indicated that chemical precipitation and ion exchange contributed to the adsorption, in which the magnetic biochar metal-π complexation also enhanced the adsorption. The pot experiment revealed that MCSB (2.0 %DW) significantly enhanced the biomass of lettuce, and facilitated the immobilization of DTPA-Cu (p < 0.05). SEM-EDS, XPS, and FTIR were utilized for morphological characterization and functional group identification, and the increased active adsorption sites (-OH, -COOH, CO, and Fe-O) of MCSB enhanced chemisorption and π-π EDA complexation with Cu(Ⅱ). EEM-PARAFAC and RDA analysis further elucidated that magnetic biochar immobilized copper and reduced biotoxicity (efficiency: 76.12%) by adjusting soil pH, phosphate, and SOM release (negative correlation). The presence of iron oxides (FeOx) promoted in situ adsorption of metallic copper and offered new insights into soil remediation.


Asunto(s)
Sasa , Contaminantes Químicos del Agua , Cobre/química , Carbón Orgánico/química , Adsorción , Oxidación-Reducción , Suelo , Cinética , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química
7.
J Environ Manage ; 362: 121370, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838536

RESUMEN

Bamboos are fast-growing, aggressively-spreading, and invasive woody clonal species that often encroach upon adjacent tree plantations, forming bamboo-tree mixed plantations. However, the effects of bamboo invasion on leaf carbon (C) assimilation, and nitrogen (N) and phosphorus (P) utilization characteristics remains unclear. We selected four different stands of Pleioblastus amarus invading Chinese fir (Cunninghamia lanceolata) plantations to investigate the concentrations, stoichiometry, and allometric growth relationships of mature and withered leaves of young and old bamboos, analyzing N and P utilization and resorption patterns. The stand type, bamboo age, and their interaction affected the concentrations, stoichiometry and allometric growth patterns of leaf C, N, and P in both old and young bamboos, as well as the N and P resorption efficiency. Bamboo invasion into Chinese fir plantations decreased leaf C, N, and P concentrations, C:N and C:P ratios, N and P resorption efficiency, and allometric growth exponents among leaf C, N, and P, while it only slightly altered N:P ratios. PLS-PM analysis revealed that bamboo invasion negatively impacted leaf C, N, and P concentrations, as well as N and P utilization and resorption. The results indicate that high N and P utilization and resorption efficiency, along with the mutual sharing of C, N, and P among bamboos in interface zones, promote continuous bamboo expansion and invasion. Collectively, these findings highlight the significance of N and P utilization and resorption in bamboo expansion and invasion and provide valuable guidance for the establishment of mixed stands and the ecological management of bamboo forests.


Asunto(s)
Nitrógeno , Nitrógeno/metabolismo , Especies Introducidas , Fósforo/análisis , Hojas de la Planta/metabolismo , Carbono , Poaceae/crecimiento & desarrollo , Nutrientes/metabolismo , Árboles , Cunninghamia/crecimiento & desarrollo , Cunninghamia/metabolismo , Sasa/metabolismo
8.
J Vector Borne Dis ; 61(2): 227-235, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38922657

RESUMEN

BACKGROUND OBJECTIVES: Aedes aegypti and Ae. albopictus mosquitoes breed in natural and artificial containers, and they transmit dengue and chikungunya. A study was conducted to identify the contribution of bamboo stumps to these disease vectors that were used in the flower garden as pillars to hold the bamboo flex fence. METHODS: Two sizes of whole bamboo were used to hold fences around gardens at Dhaka University, Bangladesh, and were painted red and green. Mosquito larvae and pupae were collected from bamboo stumps between July and August, and vectors were identified up to the species level. The data were analyzed using the STATA/MP 14.2 version. RESULTS: 83.5% and 0.2% were Ae. albopictus and Ae. aegypti, respectively, and the remaining were Culex and Ar-migeres species. Ae. albopictus, Ae. aegypti, and both species-positive bamboo stumps were 46.9, 0.7, and 47.1%, respectively. 54.5% of the bamboo stumps had at least one mosquito species. The average stump depth for Aedes positive stumps (mean=11.7 cm, SE = 0.5) was significantly (p <0.001) higher than the Aedes negative stumps (mean = 9.5 cm, SE = 0.4). 53.8% and 38.0% stumps were found Aedes positive on the ground and upper sides of fences, respectively, and found significant (p<0.01) differences between both sides. A zero-inflated negative binomial count model is significant at a 5% level of significance, χ2(4) = 11.8, p = 0.019 (<0.05) for Ae. albopictus. Stump depth is found to have a significant positive effect on the number of Aedes-positive stumps. INTERPRETATION CONCLUSION: Artificially used natural containers are adding pressure to current mosquito control activities as mosquitoes are breeding on them, which needs additional attention.


Asunto(s)
Aedes , Fiebre Chikungunya , Dengue , Larva , Control de Mosquitos , Mosquitos Vectores , Animales , Bangladesh/epidemiología , Dengue/transmisión , Dengue/prevención & control , Aedes/fisiología , Aedes/virología , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/prevención & control , Larva/fisiología , Pupa/fisiología , Sasa , Culex/fisiología , Humanos
9.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695980

RESUMEN

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Asunto(s)
Carbón Orgánico , Cobre , Contaminantes Químicos del Agua , Zinc , Adsorción , Zinc/química , Cobre/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Permanganato de Potasio/química , Purificación del Agua/métodos , Sasa/química , Hidróxido de Sodio/química
10.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570374

RESUMEN

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Asunto(s)
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Contaminantes del Suelo , Triazinas , Carbón Orgánico , Suelo , Adsorción , Monitoreo del Ambiente , Herbicidas/análisis , Contaminantes del Suelo/análisis
11.
J Environ Manage ; 345: 118872, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683384

RESUMEN

The health of agroecosystems is subsiding unremittingly, and the over-use of chemical fertilizers is one of the key reasons. It is hypothesized that integrating biochar, a carbon (C)-rich product, would be an effective approach to reducing the uses of synthetic fertilizers and securing crop productivity through improving soil properties and nutrient cycling. The bamboo biochar at different quantities (4-12 Mg ha-1) and combinations with chemical fertilizers were tested in stevia (Stevia rebaudiana) farming in silty clay acidic soil. The integration of biochar at 8 Mg ha-1 with 100% nitrogen (N), phosphorus (P), and potassium (K) produced statistically (p ≤ 0.05) higher leaf area index, dry leaf yield, and steviol glycosides yield by about 18.0-33.0, 25.8-44.9, and 20.5-59.4%, respectively, compared with the 100% NPK via improving soil physicochemical properties. Soil bulk density was reduced by 5-8% with biochar at ≥ 8 Mg ha-1, indicating the soil porosity was increased by altering the soil macrostructure. The soil pH was significantly (p ≤ 0.05) augmented with the addition of biochar alone or in the combination of N because of the alkaline nature of the used biochar (pH = 9.65). Furthermore, integrating biochar at 8 Mg ha-1 with 100% NPK increased 22.7% soil organic C compared with the sole 100% NPK. The priming effect of applied N activates soil microorganisms to mineralize the stable C. Our results satisfy the hypothesis that adding bamboo biochar would be a novel strategy for sustaining productivity by altering soil physicochemical properties.


Asunto(s)
Sasa , Stevia , Carbón Orgánico , Carbono , Suelo , Secuestro de Carbono , Fertilizantes , Nitrógeno , Nutrientes
12.
J Environ Manage ; 325(Pt B): 116432, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36274337

RESUMEN

Maintaining humidification and inhibiting nitrogen losses during vermicomposting process have emerged to be key factors for high-quality productions. Previous data have showed outstanding functions of biochar addition in improving vermicomposting quality. In this study, the influence of bamboo biochar (BB) and rice husk biochar (RHB) addition on compost maturity, humification and nitrogen loss was evaluated in the vermicomposting of cattle manure and maize straw. Results revealed that BB or RHB amendment improved organic matter decomposition, enhanced humification and maturity of compost, particularly in the 10% BB treatment, which exerted the highest humic acids content and GI value. Furthermore, BB or RHB addition significantly reduced nitrogen losses, in which the volatilization of NH3 and N2O were reduced by 24.93%-66.23% and 14.91%-55.12%. The fewest nitrogen loss was detected in the treatment of 10% BB. Biochar inhibited nirK, nirS but promoted AOB-amoA, nosZ expression; fewer N2O producing bacteria (Pseudomonas, Devosia, Luteimonas genus) were observed in the biochar treatment, and thereby decreased the N2O emission. Therefore, 10% BB addition for co-vermicomposting cattle manure and maize straw is an efficient way to increase humification, maturity, and reduce nitrogen loss, and future applications following this strategy is believed to generate better productions.


Asunto(s)
Compostaje , Oryza , Sasa , Bovinos , Animales , Estiércol , Carbón Orgánico/metabolismo , Nitrógeno/metabolismo , Zea mays/metabolismo , Suelo , Oryza/metabolismo
13.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299018

RESUMEN

Bamboo scrimber is widely used in interior decoration, architecture, and many other fields. However, it has caused huge security risks due to its inherent flammability and easy-to-produce toxic volatiles after combustion. In this work, the bamboo scrimber with superior flame retardant and smoke suppression properties was produced via the coupling of phosphocalcium-aluminum hydrotalcite (PCaAl-LDHs) with bamboo bundles. The results demonstrated that the flame-retardant bamboo scrimber (FRBS) heat release rate (HRR) and total heat release (THR) were, respectively, reduced by 34.46% and 15.86% compared with that of untreated bamboo scrimber. At the same time, the unique multi-layer structure of PCaAl-LDHs effectively slowed down the release rate of flue gas by extending its escape path. Cone calorimetry showed that the total smoke emissions (TSR) and specific extinction area (SEA) of FRBS were, respectively, reduced by 65.97% and 85.96% when the concentration of the flame retardant was 2%, which greatly developed the fire safety of the bamboo scrimber. This method not only improves the fire safety of bamboo scrimber but can also be expected to broaden its use scenarios.


Asunto(s)
Retardadores de Llama , Nanoestructuras , Aluminio , Calorimetría , Humo , Sasa
14.
Environ Res ; 209: 112830, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35093307

RESUMEN

The discharge of antibiotics evokes environmental health crisis, and is also a waste of organic energy. Currently, heterogeneous Fenton for antibiotics removal has attracted growing attentions due to wide pH range and no iron sludge production, however, it often suffers from a low formation rate of Fe(II), resulting in difficult application of heterogeneous Fenton technology in sewage treatment. To overcome this drawback, bamboo biochar (BB) is coupled with schwertmannite (Sch) through Acidithiobacillus ferrooxidans-mediated Fe(II) oxidation reaction to obtain a heterogeneous catalyst (Sch/BB) with high adsorption performance and Fenton activity. According to the analysis of experimental results, electrons around C (from BB) can easily transfer to Fe by Fe-O-C bonds to expedite ≡Fe(III)/≡Fe(II) cycle, while electrons of antibiotics adsorbed on Sch/BB surface are effectively utilized to maintain the efficient regeneration of ≡Fe(II) through BB electron shuttle or Fe-O-C bonds between Sch/BB and pollutants, further causing a superior Fenton activity (98% antibiotics removal) of Sch/BB. Moreover, due to its excellent adsorption performance, Sch/BB as filter materials can effectively remove dye pollutants in flow wastewater. These findings provided a high-activity and practical heterogeneous Fenton catalyst for pollutants degradation, while a new perspective for efficient utilization of the electrons of organic pollutants was given.


Asunto(s)
Carbón Orgánico , Sasa , Antibacterianos , Electrones , Compuestos Férricos , Compuestos Ferrosos , Peróxido de Hidrógeno , Compuestos de Hierro , Oxidación-Reducción
15.
J Sep Sci ; 45(10): 1766-1773, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35261155

RESUMEN

In this study, a biochar-based magnetic solid-phase microextraction method, coupled with liquid chromatography-mass spectrometry, was developed for analyzing fentanyl analogs from urine sample. Magnetic biochar was fabricated through a one-step pyrolysis carbonization and magnetization process, followed by an alkali treatment. In order to achieve desired extraction efficiency, feed stocks (wood and bamboo) and different pyrolysis temperatures (300-700°C) were optimized. The magnetic bamboo biochar pyrolyzed at 400°C was found to have the greatest potential for extraction of fentanyls, with enrichment factors ranging from 58.9 to 93.7, presumably due to H-bonding and π-π interactions between biochar and fentanyls. Various extraction parameters, such as type and volume of desorption solvent, pH, and extraction time, were optimized, respectively, to achieve the highest extraction efficiency for the target fentanyls. Under optimized conditions, the developed method was found to have detection limits of 3.0-9.4 ng/L, a linear range of 0.05-10 µg/L, good precisions (1.9-9.4% for intrabatch, 2.9-9.9% for interbatch), and satisfactory recoveries (82.0-111.3%). The developed method by using magnetic bamboo biochar as adsorbent exhibited to be an efficient and promising pretreatment procedure and could potentially be applied for drug analysis in biological samples.


Asunto(s)
Microextracción en Fase Líquida , Sasa , Carbón Orgánico , Cromatografía Líquida de Alta Presión , Fentanilo , Límite de Detección , Microextracción en Fase Líquida/métodos , Fenómenos Magnéticos , Extracción en Fase Sólida
16.
Ecotoxicol Environ Saf ; 238: 113603, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35551046

RESUMEN

Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.


Asunto(s)
Sasa , Contaminantes del Suelo , Biodegradación Ambiental , Quelantes/farmacología , Ácido Edético/farmacología , Plomo/toxicidad , Ácido Nitrilotriacético , Plantas , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
17.
Genomics ; 113(4): 2085-2095, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895283

RESUMEN

The present study used soils contaminated with Fusarium oxysporum f. sp. capsici (CCS) and CCS amended with bamboo biochar (CCS + BC) to grow the pepper variety Qujiao No.1. The physiological performance, and transcriptome and metabolome profiling in leaf (L) and fruit (F) of Qujiao No.1 were conducted. Application of biochar improved soil properties, pepper plant nutrition and increased activities of enzymes related to pest/disease resistance, leading to superior physiological performance and lesser F. wilt disease incidence than plants from CCS. Most of the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were involved in protein processing in endoplasmic reticulum (fruit), plant pathogen interaction (fruit), photosynthesis (leaf), phenylpropanoid biosynthesis (both tissues) and metabolic pathways (both tissues). Biochar improved plant photosynthesis, enhanced the immune system, energy production and increased stress signaling pathways. Overall, our results provide evidence of a number of pathways induced by biochar in pepper regulating its response to F. wilt disease.


Asunto(s)
Fusarium , Sasa , Carbón Orgánico , Fusarium/genética , Metaboloma , Enfermedades de las Plantas/genética , Sasa/genética , Transcriptoma
18.
ScientificWorldJournal ; 2022: 8454865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330350

RESUMEN

Background: Hot water extract of Sasa albomarginata (Kumazasa) leaves is commercially available and used as a dietary supplement or skincare cream. The extract possesses anti-inflammatory activity on the mouse atopic dermatitis model. To elucidate the mechanism of in vivo activity, we have studied the cellular anti-inflammatory and antioxidant activities of the extract and its constituents. Methods: Secretion of mouse and human IL-6 was measured by ELISA. ROS production was measured by a fluorescent reagent. Ultrahigh performance liquid chromatography (UHPLC)/MS was used for the ingredient analysis. Results: The Sasa albomarginata extract inhibited inflammatory mediators such as LPS-induced NO, IL-6, and ROS production in mouse monocyte leukemia RAW264.7 cells. It also inhibited iNOS, IL-6, and IL-1ß expressions. Moreover, it inhibited LPS-induced IL-6 expression and production in human monocyte leukemia THP-1 cells differentiated into macrophages. The HPLC analysis of the extract revealed the existence of coumaric acid, ferulic acid, and coumaric acid methyl ester. Coumaric acid methyl ester but not coumaric acid or ferulic acid inhibited LPS-induced NO, IL-6, and ROS production in RAW264.7 cells and IL-6 production in differentiated THP-1 cells. Conclusion: The hot water extract of Sasa albomarginata leaves and one of its constituents possess cellular anti-inflammatory and antioxidant activities.


Asunto(s)
Leucemia , Sasa , Humanos , Antioxidantes/farmacología , Lipopolisacáridos , Interleucina-6 , Ésteres , Especies Reactivas de Oxígeno , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Agua , Óxido Nítrico/metabolismo
19.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164407

RESUMEN

It is important to inhibit oxidative stress to maintain sperm motility during cryopreservation. The present study was performed to investigate the effects of supplementing oligomeric proanthocyanidins (OPC) and bamboo leaf flavonoids (BLF) or their combination as an extender for Simmental bull semen freezing. OPC, BLF, or their combination were added to the frozen diluent of bovine semen. Afterwards, computer-assisted semen analysis (CASA), detection of membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-PX, MDA, and ROS were conducted. The results showed that adding 50 mg/L OPC or 4 mg/L BLF could improve the quality of frozen sperm. Compared with 50 mg/L OPC alone, the combination of 50mg/L OPC and 2 mg/L BLF significantly increased the kinematic parameters of sperm, and sperm CAT, GSH-PX and SOD levels (p < 0.05), whereas the MDA of sperm was decreased (p < 0.05). These results indicated that compared to the addition of 50 mg/L OPC alone, a combination of 50 mg/L OPC and 2 mg/L BLF could further improve the quality of frozen semen. The results could provide theoretical data support for the development of a new protective agent and are significant for the cryopreservation of bovine semen in the future.


Asunto(s)
Bovinos , Crioprotectores/metabolismo , Proantocianidinas/metabolismo , Preservación de Semen/veterinaria , Semen , Animales , Bovinos/fisiología , Criopreservación/veterinaria , Masculino , Fitoquímicos/metabolismo , Sasa/metabolismo , Semen/efectos de los fármacos , Semen/fisiología , Motilidad Espermática/efectos de los fármacos
20.
J Sci Food Agric ; 102(11): 4927-4932, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35266158

RESUMEN

BACKGROUND: The aim of this research was to investigate the influence of bamboo grass (Tiliacora triandra, Diels) pellet (BP) containing phytonutrients on rumen fermentation under various level of roughage (R) to concentrate (C) ratios. The experimental treatments were randomly assigned following a completely randomized design using a 3 × 5 factorial arrangement. The first factor was ratios of R:C at 100:0, 70:30, and 30:70 and the second factor was BP supplementation levels at 0, 1, 2, 3, and 4% of dry matter substrate, respectively. RESULTS: The ratio of R:C significantly enhanced rumen gas production especially when increased level of concentrate. Moreover, dry matter degradability of fermentation were improved (P < 0.01) by R:C and level of BP supplementation, and there was an interactive effect. The ammonia nitrogen (NH3 -N) concentration, protozoal population and methane (CH4 ) production were remarkably influenced (P < 0.01). There were highly significant interactive effects between ratio of R:C and level of BP supplementation. Furthermore, fermentation parameters especially those of propionate (C3 ) concentration was profoundly increased by higher ratio of R:C and by the BP supplementation, interactive effect (P < 0.01). Notably, both level of R:C and BP supplementation significantly reduced NH3 -N concentration and CH4 production. Interactive effects of both factors were obtained (P < 0.01). CONCLUSION: The ratio of R:C at 30:70 with BP supplementation at 4% could enhance fermentation characteristics and reduce CH4 production, while the interactive effects were additionally observed. The BP could be a good phytonutrient source to modulate rumen fermentation. © 2022 Society of Chemical Industry.


Asunto(s)
Metano , Sasa , Alimentación Animal/análisis , Animales , Dieta , Suplementos Dietéticos , Digestión , Fermentación , Metano/metabolismo , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA