RESUMEN
Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Selenio , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Ratas , Animales , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroprotección/fisiología , Proteína 2 de Membrana Asociada a Vesículas , Selenoproteína P , Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Glucosa/metabolismo , Proteínas Qa-SNARERESUMEN
Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.
Asunto(s)
Liasas , Selenio , Humanos , Liasas/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas , Células JurkatRESUMEN
There is a dearth of data on Se status in very old adults. The aims of this study were to assess Se status and its determinants in 85-year-olds living in the Northeast of England by measuring serum Se and selenoprotein P (SELENOP) concentrations and glutathione peroxidase 3 (GPx3) activity. A secondary aim was to examine the interrelationships between each of the biomarkers. In total, 757 participants (463 women, 293 men) from the Newcastle 85+ Study were included. Biomarker concentrations were compared with selected cut-offs (serum Se: suboptimal 70 µg/l and deficient 45 µg/l; SELENOP: suboptimal 4·5 mg/l and deficient 2·6 mg/l). Determinants were assessed using linear regressions, and interrelationships were assessed using restricted cubic splines. Median (inter-quartile range) concentrations of serum Se, SELENOP and of GPx3 activity were 53·6 (23·6) µg/l, 2·9 (1·9) mg/l and 142·1 (50·7) U/l, respectively. Eighty-two percentage and 83 % of participants had suboptimal serum Se (< 70 µg/l) and SELENOP (< 4·5 mg/l), and 31 % and 40 % of participants had deficient serum Se (< 45 µg/l) and SELENOP (< 2·6 mg/l), respectively. Protein intake was a significant determinant of Se status. Additional determinants of serum Se were sex, waist:hip ratio, self-rated health and disease, while sex, BMI and physical activity were determinants of GPx3 activity. There was a linear association between serum Se and SELENOP, and nonlinear associations between serum Se and GPx3 activity and between SELENOP and GPx3 activity. These findings indicate that most participants had suboptimal Se status to saturate circulating SELENOP.
Asunto(s)
Selenio , Masculino , Adulto , Humanos , Femenino , Selenoproteína P/metabolismo , Biomarcadores , Antioxidantes , Inglaterra , Glutatión PeroxidasaRESUMEN
BACKGROUND: Selenium is an essential trace mineral. The main function of selenoprotein P (SELENOP) is to transport selenium but it has also been ascribed anti-oxidative effects. METHODS: To assess the association of repeated measurements of serum SELENOP concentration with all-cause and cause-specific mortality serum SELENOP was measured at baseline and 5-year follow-up in 7,186 and 4,164 participants of the ESTHER study, a German population-based cohort aged 50-74 years at baseline. RESULTS: During 17.3 years of follow-up, 2,126 study participants (30%) died. The relationship of serum SELENOP concentration with all-cause mortality was L-shaped, with mortality being significantly higher at SELENOP concentrations < 4.1 mg/L, which is near the bottom tertile's cut-off (4.2 mg/L). All-cause mortality of participants in the bottom SELENOP tertile was significantly increased compared to subjects in the top tertile (hazard ratio [95% confidence interval]: 1.35 [1.21-1.50]). SELENOP in the bottom tertile was further associated with increased cardiovascular mortality (1.24 [1.04-1.49]), cancer mortality (1.31 [1.09-1.58]), respiratory disease mortality (2.06 [1.28-3.32]) and gastrointestinal disease mortality (2.04 [1.25-3.32]). The excess risk of all-cause mortality for those in the bottom SELENOP tertile was more than twice as strong in men as in women (interaction of SELENOP and sex; p = 0.008). CONCLUSIONS: In this large cohort study, serum SELENOP concentration was inversely associated with all-cause and cause-specific mortality. Consistent inverse associations with multiple mortality outcomes might be explained by an impaired selenium transport and selenium deficiency in multiple organs. Trials testing the efficacy of selenium supplements in subjects with low baseline SELENOP concentration are needed. TRIAL REGISTRATION: Retrospectively registered in the German Clinical Trials Register on Feb 14, 2018 (ID: DRKS00014028).
Asunto(s)
Enfermedades Gastrointestinales , Neoplasias , Selenio , Adulto , Anciano , Femenino , Humanos , Masculino , Estudios de Cohortes , Selenoproteína PRESUMEN
Previously, insulin resistance and hepatic oxidative stress with increased expressions of glutathione peroxidase (GPx) 1 and selenoprotein P (SelP) were induced in NSY mice, a diabetic mouse model, by administrating a high fat diet (HFD) and seleno-L-methionine (SeMet) for 12 weeks. In this study we developed an analysis method for serum selenoproteins using LC-tandem mass spectrometry (LC-MS/MS) and investigated the effects of supplementary selenium on serum concentrations of selenoproteins as well as protein expression in skeletal muscle as a major insulin target tissue under the same experimental condition. The glucose area under the curves for oral glucose tolerance and insulin tolerance tests indicated that the HFD induced insulin resistance, whereas the treatment of SeMet + HFD showed insignificant promotion compared with the HFD-induced insulin resistance. Although the expressions of GPx1 in gastrocnemius and soleus were not significantly induced by supplementary SeMet nor HFD administration, the expressions of SelP in both skeletal muscles were significantly induced by the treatment of SeMet + HFD. There were also significant increases in serum concentrations of SelP by supplementary SeMet + HFD administration, whereas GPx3 was augmented by supplementary SeMet only. These results indicated that the HFD intake under the sufficient selenium status augmented the blood secretion of SelP, which may participate in the reduction of insulin sensitivity in skeletal muscles as well as liver or adipose tissues, and it is a better indicator of deterioration than GPx3 as it is a major selenoprotein in serum.
Asunto(s)
Dieta Alta en Grasa , Suplementos Dietéticos , Glutatión Peroxidasa , Resistencia a la Insulina , Músculo Esquelético , Selenio , Selenoproteínas , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Selenoproteínas/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/sangre , Selenio/sangre , Selenio/administración & dosificación , Glutatión Peroxidasa GPX1 , Selenometionina/farmacología , Selenometionina/administración & dosificación , Selenoproteína P/sangre , Selenoproteína P/metabolismo , Modelos Animales de Enfermedad , Glucemia/metabolismo , Insulina/sangre , Espectrometría de Masas en TándemRESUMEN
PURPOSE: The aim of this study was to investigate the relationship between selenoprotein P, peroxiredoxin-5, renalase, total antioxidant status (TAS), mean blood pressure (mBP), and apnea-hypopnea index (AHI). METHODS: The study group consisted of 112 patients hospitalized to verify the diagnosis of obstructive sleep apnea (OSA). The inclusion criteria were consent to participate in the study and age ≥ 18 years. Patients with active proliferative disease, severe systemic diseases, or mental diseases were excluded from the study. Each patient underwent full polysomnography and had blood pressure measured. Blood samples were collected and laboratory test was performed. RESULTS: Among 112 patients enrolled, there was a statistically significant negative linear correlation between blood pressure values (sBP, dBP, mBP) and selenoprotein P, renalase, and TAS levels. Similarly, there was a negative linear correlation between AHI and selenoprotein P, renalase, and TAS levels, but none between AHI and peroxiredoxin-5. Based on the obtained regression models, higher selenoprotein P, peroxiredoxin-5, and renalase levels were independently associated with higher TAS. Lower mBP values were independently associated with the use of antihypertensive drugs, higher TAS, and younger age. Male gender, higher BMI, and higher mBP were independently associated with higher AHI. CONCLUSIONS: Higher concentrations of selenoprotein P, peroxiredoxin-5, and renalase were associated with higher TAS, which confirms their antioxidant properties. There was an indirect connection between tested antioxidants and blood pressure values.
Asunto(s)
Antioxidantes , Monoaminooxidasa , Apnea Obstructiva del Sueño , Adolescente , Humanos , Masculino , Peroxirredoxinas , Selenoproteína PRESUMEN
We investigated a hereditary cerebellar ataxia in Belgian Shepherd dogs. Affected dogs developed uncoordinated movements and intention tremor at two weeks of age. The severity of clinical signs was highly variable. Histopathology demonstrated atrophy of the CNS, particularly in the cerebellum. Combined linkage and homozygosity mapping in a family with four affected puppies delineated a 52 Mb critical interval. The comparison of whole genome sequence data of one affected dog to 735 control genomes revealed a private homozygous structural variant in the critical interval, Chr4:66,946,539_66,963,863del17,325. This deletion includes the entire protein coding sequence of SELENOP and is predicted to result in complete absence of the encoded selenoprotein P required for selenium transport into the CNS. Genotypes at the deletion showed the expected co-segregation with the phenotype in the investigated family. Total selenium levels in the blood of homozygous mutant puppies of the investigated litter were reduced to about 30% of the value of a homozygous wildtype littermate. Genotyping >600 Belgian Shepherd dogs revealed an additional homozygous mutant dog. This dog also suffered from pronounced ataxia, but reached an age of 10 years. Selenop-/- knock-out mice were reported to develop ataxia, but their histopathological changes were less severe than in the investigated dogs. Our results demonstrate that deletion of the SELENOP gene in dogs cause a defect in selenium transport associated with CNS atrophy and cerebellar ataxia (CACA). The affected dogs represent a valuable spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency.
Asunto(s)
Ataxia Cerebelosa/genética , Selenoproteína P/genética , Selenoproteína P/metabolismo , Animales , Atrofia/fisiopatología , Sistema Nervioso Central/fisiología , Ataxia Cerebelosa/metabolismo , Enfermedades de los Perros/genética , Perros , Femenino , Ligamiento Genético/genética , Genoma/genética , Genotipo , Homocigoto , Masculino , Fenotipo , Secuenciación Completa del Genoma/métodosRESUMEN
Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.
Asunto(s)
Túbulos Renales Proximales , Daño por Reperfusión , Selenoproteína P , Humanos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Biomarcadores/análisis , Línea Celular , Supervivencia Celular , Técnicas In Vitro , Túbulos Renales Proximales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Selenoproteína P/sangre , Selenoproteína P/metabolismo , Selenito de Sodio/farmacologíaRESUMEN
The quality of skeletal muscle is maintained by a balance between protein biosynthesis and degradation. Disruption in this balance results in sarcopenia. However, its underlying mechanisms remain underinvestigated. Selenoprotein P (SeP; encoded by Selenop in mice) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. We created immobilized muscle atrophy model in Selenop knockout (KO) mice. Immobilization (IMM) significantly reduced cross-sectional areas and the size of skeletal muscle fibers, which were ameliorated in KO mice. IMM upregulated the genes encoding E3 ubiquitin ligases and their upstream FoxO1, FoxO3, and KLF15 transcription factors in the skeletal muscle, which were suppressed in KO mice. These findings suggest a possible involvement of SeP-mediated reductive stress in physical inactivity-mediated sarcopenia, which may be a therapeutic target against sarcopenia.NEW & NOTEWORTHY Selenoprotein P (SeP) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. Immobilization (IMM) significantly reduced skeletal muscle mass in mice, which was prevented in SeP knockout (KO) mice. IMM-induced Foxos/KLF15-atrogene upregulation was suppressed in the skeletal muscle of KO mice. These findings suggest that SeP-mediated reductive stress is involved in and may be a therapeutic target for physical inactivity-mediated muscle atrophy.
Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Ratones , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Sarcopenia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Motivos TripartitosRESUMEN
Selenoprotein P (SELENOP) is a major plasma selenoprotein that contains 10 Sec residues, which is encoded by the UGA stop codon. The mRNA for SELENOP has the unique property of containing two Sec insertion sequence (SECIS) elements, which is located in the 3' untranslated region (3'UTR). Here, we coincidentally identified a novel gene, CCDC152, by sequence analysis. This gene was located in the antisense region of the SELENOP gene, including the 3'UTR region in the genome. We demonstrated that this novel gene functioned as a long non-coding RNA (lncRNA) that decreased SELENOP protein levels via translational rather than transcriptional, regulation. We found that the CCDC152 RNA interacted specifically and directly with the SELENOP mRNA and inhibited its binding to the SECIS-binding protein 2, resulting in the decrease of ribosome binding. We termed this novel gene product lncRNA inhibitor of SELENOP translation (L-IST). Finally, we found that epigallocatechin gallate upregulated L-IST in vitro and in vivo, to suppress SELENOP protein levels. Here, we provide a new regulatory mechanism of SELENOP translation by an endogenous long antisense ncRNA.
Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Largo no Codificante/metabolismo , Selenoproteína P/genética , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Selenoproteína P/biosíntesisRESUMEN
The significance of selenoproteins for the incidence of prematurity and oxidative-damage-related diseases in premature newborns is poorly understood. The latter are at risk for ROP as well as BPD, IVH, PDA, RDS, and NEC, which is particularly high for newborns with extremely low gestational age (ELGA) and extremely low birth weight (ELBW). This study evaluates the hypothesis that variation in the selenoprotein-encoding genes SELENOP, SELENOS, and GPX4 affects the risk of ROP and other comorbidities. The study included infants born ≤ 32 GA, matched for onset and progression of ROP into three groups: no ROP, spontaneously remitting ROP, and ROP requiring treatment. SNPs were determined with predesigned TaqMan SNP genotyping assays. We found the association of the SELENOP rs3877899A allele with ELGA (defined as <28 GA), ROP requiring treatment, and ROP not responsive to treatment. The number of RBC transfusions, ELGA, surfactant treatment, and coexistence of the rs3877899A allele with ELGA were independent predictors of ROP onset and progression, accounting for 43.1% of the risk variation. In conclusion, the SELENOP rs3877899A allele associated with reduced selenium bioavailability may contribute to the risk of ROP and visual impairment in extremely preterm infants.
Asunto(s)
Recien Nacido Prematuro , Retinopatía de la Prematuridad , Selenoproteína P , Femenino , Humanos , Recién Nacido , Edad Gestacional , Incidencia , Recien Nacido con Peso al Nacer Extremadamente Bajo , Retinopatía de la Prematuridad/genética , Estudios Retrospectivos , Factores de Riesgo , Selenoproteína P/genéticaRESUMEN
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Asunto(s)
Selenio , Selenio/metabolismo , Selenoproteínas/metabolismo , Glutatión Peroxidasa/metabolismo , Selenoproteína P , Antioxidantes/metabolismoRESUMEN
(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.
Asunto(s)
Selenio , Oligoelementos , Ratones , Animales , Oligoelementos/farmacología , Oligoelementos/análisis , Antioxidantes/farmacología , Selenio/farmacología , Catalasa/genética , Catalasa/metabolismo , Cobre/análisis , Peroxidación de Lípido , Selenometionina/farmacología , Selenoproteína P/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Homeostasis , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Background and Objectives: Insufficient intake of essential micronutrient selenium (Se) increases the susceptibility to diseases associated with oxidative stress. The study aim was to assess Se status and oxidative stress in COVID-19 patients depending on severity of the disease. Materials and Methods: Blood plasma of 80 post-COVID-19 disease patients and 40 acutely ill patients were investigated. Concentration of Se was detected by a fluorometric method with di-amino-naphthalene using acidic hydrolysis. Selenoprotein P (Sepp1), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) and their metabolite adducts were evaluated by spectrophotometric methods using commercial assay kits. Results: Obtained results demonstrated that Se and Sepp1 concentration in acute patients were significantly (p < 0.05 for Se and p < 0.001 for Sepp1) decreased compared with post-COVID-19 disease patients. However, in post-COVID-19 disease patients, Se values were close to the low limit of the norm for the European population. 4-HNE adducts concentration as a marker of lipid peroxidation was significantly increased in the acute patients group compared to the recovery group (p < 0.001). Conclusions: COVID-19 pathology is characterized by the induction of oxidative stress and suppression of antioxidant defenses during the acute phase. Lower levels of Se and Sepp1 and higher levels of reactive oxygen species reflect this imbalance, highlighting the role of oxidative stress in the disease's pathogenesis.
Asunto(s)
COVID-19 , Selenio , Humanos , SARS-CoV-2 , Estrés Oxidativo , Antioxidantes/metabolismo , Selenoproteína P/metabolismoRESUMEN
BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.
Asunto(s)
Colitis Ulcerosa/metabolismo , Neoplasias Asociadas a Colitis/prevención & control , Colitis/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Estrés Oxidativo , Selenoproteína P/metabolismo , Adolescente , Animales , Azoximetano , Estudios de Casos y Controles , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Niño , Preescolar , Colitis/inducido químicamente , Colitis/genética , Colitis Ulcerosa/genética , Neoplasias Asociadas a Colitis/inducido químicamente , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/metabolismo , Colon/patología , Daño del ADN , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica , Humanos , Mucosa Intestinal/patología , Hígado/metabolismo , Masculino , Ratones Noqueados , Células Mieloides/metabolismo , Selenoproteína P/genéticaRESUMEN
Cyclosporine A (CsA) is an immunosuppressant applied worldwide for preventing graft rejection and autoimmune diseases. However, CsA elevates oxidative stress, which can lead to liver injuries. The present study aimed to clarify the mechanisms underlying the CsA-mediated oxidative stress. Among the redox proteins, CsA concentration-dependently downregulated Selenop-encoding selenoprotein P, a major circulating antioxidant protein reducing reactive oxygen species, in hepatocytes cell lines and primary hepatocytes. The luciferase assay identified the CsA-responsive element in the SELENOP promoter containing a putative binding site for forkhead box protein O (FoxO) 1. The CsA-mediated suppression on the SELENOP promoter was independent of the nuclear factor of activated T-cell, a classic target repressed by CsA. A chromatin immunoprecipitation assay showed that CsA suppressed the FoxO1 binding to the SELENOP promoter. Foxo1 knockdown significantly downregulated Selenop expression in H4IIEC3 cells. Furthermore, CsA downregulated FoxO1 by inactivating its upstream signal transducer and activator of transcription 3 (STAT3). Knockdown of Stat3 downregulated Foxo1 and Selenop expression in hepatocytes. These findings revealed a novel mechanism underlying CsA-induced oxidative stress by downregulating the STAT3-FoxO1-Selenop pathway in hepatocytes. SIGNIFICANCE STATEMENT: This study shows that Cyclosporine A (CsA) downregulates Selenop, an antioxidant protein, by suppressing the signal transducer and activator of transcription 3-forkhead box protein O1 pathway in hepatocytes, possibly one of the causations of CsA-induced oxidative stress in hepatocytes. The present study sheds light on the previously unrecognized CsA-redox axis.
Asunto(s)
Ciclosporina , Selenoproteína P , Antioxidantes/farmacología , Ciclosporina/farmacología , Proteína Forkhead Box O1/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hepatocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismoRESUMEN
Several single nucleotide polymorphisms (SNPs) could indirectly, as well directly, influence metabolic parameters related to health effects in response to selenium (Se) supplementation. This study aimed to investigate whether the selenoprotein SNPs were associated with the response of Se status biomarkers to the Brazil nut consumption in patients using statins and if the variation in Se homoeostasis could affect antioxidant protection, lipid profile, muscle homoeostasis and selenoproteins mRNA. The study was performed in the Ribeirão Preto Medical School University Hospital. Thirty-two patients using statins received one unit of Brazil nut daily for 3 months. Body composition, blood Se concentrations, erythrocyte glutathione peroxidase (GPX) activity, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triacylglycerol (TAG), creatine kinase (CK) activity and gene expression of GPX1 and selenoprotein P (SELENOP) were evaluated before and after Brazil nut consumption. The volunteers were genotyped for SNP in GPX1 (rs1050450) and SELENOP (rs3877899 and rs7579). SNPs in selenoproteins were not associated with plasma and erythrocyte Se, but SNPs in SELENOP influenced the response of erythrocyte GPX activity and CK activity, TAG and LDL after Brazil nut consumption. Also, Brazil nut consumption increased GPX1 mRNA expression only in subjects with rs1050450 CC genotype. SELENOP mRNA expression was significantly lower in subjects with rs7579 GG genotype before and after the intervention. Thus, SNP in SELENOP could be associated with interindividual differences in Se homeostasis after Brazil nut consumption, emphasising the involvement of genetic variability in response to Se consumption towards health maintenance and disease prevention.
Asunto(s)
Bertholletia , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Selenio , Antioxidantes , Biomarcadores , Glutatión Peroxidasa/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , ARN Mensajero/genética , Selenoproteína P/genética , Selenoproteínas/genética , TriglicéridosRESUMEN
The study was conducted to determine the effects of three dietary Se sources, such as sodium-selenite (S-S), seleno-yeast (S-Y) and seleno-methionine (S-M), on Se concentration, glutathione peroxidase (GPX) and TXNRD activities, and mRNA expression of fifteen representative selenoproteins, and protein expression of four endoplasmic reticulum-resided selenoproteins in a wide range of tissues of yellow catfish. Compared with S-S and S-M groups, dietary S-Y significantly decreased growth performance and feed utilisation of yellow catfish. Dietary Se sources significantly influenced Se contents in the spleen, dorsal muscle and the kidney, GPX activities in spleen, kidney, intestine, muscle and mesenteric fat, and TXNRD activities in the heart, intestine and mesenteric fat. Among ten tested tissues, dietary Se sources influenced mRNA expression of GPX4 and SELENOK in three tissues; GPX3, SELENOS and TXNRD2 in four tissues; SELENOF, SELENON and DIO2 in five tissues; SELENOM, GPX1/2 and TXNRD3 in six tissues; SELENOW in seven tissue and SELENOP and SELENOT in eight tissues. Based on these observations above, S-S and S-M seem to be suitable Se sources for improving growth performance and feed utilisation of yellow catfish. Dietary Se sources differentially influence the expression of selenoproteins in various tissues of yellow catfish. For the first time, we determined the expression of selenoproteins in fish in responses to dietary Se sources, which contributes to a better understanding of the functions and regulatory mechanisms of selenoporteins.
Asunto(s)
Bagres , Selenio , Animales , Bagres/metabolismo , ARN Mensajero/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenoproteína P , Selenoproteínas/genética , Selenoproteínas/metabolismoRESUMEN
Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 µg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.
Asunto(s)
Diabetes Mellitus Tipo 2 , Selenio , Dieta , Humanos , Selenio/metabolismo , Selenio/toxicidad , Selenoproteína P , Selenoproteínas/metabolismoRESUMEN
Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.