Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.851
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(2): 527-542.e19, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585086

RESUMEN

Much of current molecular and cell biology research relies on the ability to purify cell types by fluorescence-activated cell sorting (FACS). FACS typically relies on the ability to label cell types of interest with antibodies or fluorescent transgenic constructs. However, antibody availability is often limited, and genetic manipulation is labor intensive or impossible in the case of primary human tissue. To date, no systematic method exists to enrich for cell types without a priori knowledge of cell-type markers. Here, we propose GateID, a computational method that combines single-cell transcriptomics with FACS index sorting to purify cell types of choice using only native cellular properties such as cell size, granularity, and mitochondrial content. We validate GateID by purifying various cell types from zebrafish kidney marrow and the human pancreas to high purity without resorting to specific antibodies or transgenes.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Programas Informáticos , Transcriptoma , Animales , Humanos , Riñón/citología , Páncreas/citología , Análisis de la Célula Individual , Pez Cebra/anatomía & histología
2.
Nat Immunol ; 19(1): 85-97, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29167569

RESUMEN

The hierarchy of human hemopoietic progenitor cells that produce lymphoid and granulocytic-monocytic (myeloid) lineages is unclear. Multiple progenitor populations produce lymphoid and myeloid cells, but they remain incompletely characterized. Here we demonstrated that lympho-myeloid progenitor populations in cord blood - lymphoid-primed multi-potential progenitors (LMPPs), granulocyte-macrophage progenitors (GMPs) and multi-lymphoid progenitors (MLPs) - were functionally and transcriptionally distinct and heterogeneous at the clonal level, with progenitors of many different functional potentials present. Although most progenitors had the potential to develop into only one mature cell type ('uni-lineage potential'), bi- and rarer multi-lineage progenitors were present among LMPPs, GMPs and MLPs. Those findings, coupled with single-cell expression analyses, suggest that a continuum of progenitors execute lymphoid and myeloid differentiation, rather than only uni-lineage progenitors' being present downstream of stem cells.


Asunto(s)
Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/metabolismo , Análisis de la Célula Individual/métodos , Animales , Linaje de la Célula/genética , Separación Celular/métodos , Células Cultivadas , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Ratones , Trasplante Heterólogo
3.
Annu Rev Cell Dev Biol ; 30: 677-704, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150008

RESUMEN

Two opposing descriptions of so-called mesenchymal stem cells (MSCs) exist at this time. One sees MSCs as the postnatal, self-renewing, and multipotent stem cells for the skeleton. This cell coincides with a specific type of bone marrow perivascular cell. In skeletal physiology, this skeletal stem cell is pivotal to the growth and lifelong turnover of bone and to its native regeneration capacity. In hematopoietic physiology, its role as a key player in maintaining hematopoietic stem cells in their niche and in regulating the hematopoietic microenvironment is emerging. In the alternative description, MSCs are ubiquitous in connective tissues and are defined by in vitro characteristics and by their use in therapy, which rests on their ability to modulate the function of host tissues rather than on stem cell properties. Here, I discuss how the two views developed, conceptually and experimentally, and attempt to clarify the confusion arising from their collision.


Asunto(s)
Células Madre Mesenquimatosas/citología , Animales , Células de la Médula Ósea/clasificación , Células de la Médula Ósea/citología , Huesos/citología , Antígeno CD146/análisis , Separación Celular/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Células Clonales/citología , Tejido Conectivo/inmunología , Humanos , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/clasificación , Ratones , Modelos Biológicos , Pericitos/citología , Células Madre Pluripotentes/citología , Quimera por Radiación , Nicho de Células Madre , Células del Estroma/clasificación , Células del Estroma/citología , Trasplante Heterotópico
4.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856078

RESUMEN

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Asunto(s)
Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Embrión de Pollo , Lagartos/genética , Lagartos/embriología , Desarrollo Embrionario/genética , Transcriptoma/genética , Citometría de Flujo/métodos , Vertebrados/genética , Separación Celular/métodos , Pollos , Análisis de Secuencia de ARN/métodos
5.
Mol Cell ; 65(1): 191-201, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017590

RESUMEN

Nonsense-mediated decay (NMD) degrades mRNAs containing a premature termination codon (PTC). PTCs are a frequent cause of human genetic diseases, and the NMD pathway is known to modulate disease severity. Since partial NMD attenuation can potentially enhance nonsense suppression therapies, better definition of human-specific NMD is required. However, the majority of NMD factors were first discovered in model organisms and then subsequently identified by homology in human. Sensitivity and throughput limitations of existing approaches have hindered systematic forward genetic screening for NMD factors in human cells. We developed a method of in vivo amplification of NMD reporter fluorescence (Fireworks) that enables CRISPR-based forward genetic screening for NMD pathway defects in human cells. The Fireworks genetic screen identifies multiple known NMD factors and numerous human candidate genes, providing a platform for discovery of additional key factors in human mRNA degradation.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo , Proteínas Fluorescentes Verdes/biosíntesis , Degradación de ARNm Mediada por Codón sin Sentido , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sistemas CRISPR-Cas , Codón sin Sentido , Genotipo , Proteínas Fluorescentes Verdes/genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Mutación , Fenotipo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Factores de Tiempo , Transfección
6.
Mol Cell ; 66(2): 285-299.e5, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28416141

RESUMEN

The study of enhancers has been hampered by the scarcity of methods to systematically quantify their endogenous activity. We develop Mosaic-seq to systematically perturb enhancers and measure their endogenous activities at single-cell resolution. Mosaic-seq uses a CRISPR barcoding system to jointly measure a cell's transcriptome and its sgRNA modulators, thus quantifying the effects of dCas9-KRAB-mediated enhancer repression in single cells. Applying Mosaic-seq to 71 constituent enhancers from 15 super-enhancers, our analysis of 51,448 sgRNA-induced transcriptomes finds that only a small number of constituents are major effectors of target gene expression. Binding of p300 and RNAPII are key features of these constituents. We determine two key parameters of enhancer activity in single cells: their penetrance in a population and their contribution to expression in these cells. Through combinatorial interrogation, we find that simultaneous repression of multiple weak constituents can alter super-enhancer activity in a manner greatly exceeding repression of individual constituents.


Asunto(s)
Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional , Transcriptoma , Sistemas CRISPR-Cas , Separación Celular/métodos , Bases de Datos Genéticas , Citometría de Flujo , Regulación de la Expresión Génica , Genotipo , Células HEK293 , Humanos , Células K562 , Penetrancia , Fenotipo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Factores de Transcripción/metabolismo , Transfección , Transposasas/genética , Transposasas/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
7.
Nucleic Acids Res ; 51(1): e2, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36268865

RESUMEN

Analytical tools for gene expression profiling of individual cells are critical for studying complex biological systems. However, the techniques enabling rapid measurements of gene expression on thousands of single-cells are lacking. Here, we report a high-throughput RNA cytometry for digital profiling of single-cells isolated in liquid droplets enveloped by a thin semi-permeable membrane (microcapsules). Due to the selective permeability of the membrane, the desirable enzymes and reagents can be loaded, or replaced, in the microcapsule at any given step by simply changing the reaction buffer in which the microcapsules are dispersed. Therefore, complex molecular biology workflows can be readily adapted to conduct nucleic acid analysis on encapsulated mammalian cells, or other biological species. The microcapsules support sequential multi-step enzymatic reactions and remain intact under different biochemical conditions, freezing, thawing, and thermocycling. Combining microcapsules with conventional FACS provides a high-throughput approach for conducting RNA cytometry of individual cells based on their digital gene expression signature.


Asunto(s)
Separación Celular , Análisis de la Célula Individual , Animales , Mamíferos , ARN/genética , Análisis de la Célula Individual/métodos , Separación Celular/métodos , Perfilación de la Expresión Génica
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181606

RESUMEN

Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citometría de Flujo/métodos , Células Asesinas Naturales/metabolismo , Adulto , Linfocitos T CD8-positivos/metabolismo , Separación Celular/métodos , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/virología , Femenino , Rechazo de Injerto/inmunología , Humanos , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Células Asesinas Naturales/inmunología , Cinética , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Análisis de la Célula Individual/métodos , Viremia/inmunología , Viremia/virología
9.
Am J Physiol Cell Physiol ; 327(2): C415-C422, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912737

RESUMEN

Although studies have identified characteristics of quiescent satellite cells (SCs), their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that is highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least 3 mo without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 h/doubling), have reduced Pax7 expression (threefold decrease in Pax7 fluorescence vs. quiescence), and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.NEW & NOTEWORTHY We provide a method to isolate quiescent satellite cells from skeletal muscle. These cells are highly Pax7-positive, exhibit a very slow proliferation rate, and are capable of being maintained in culture for months without a change in phenotype. The use of these cells by muscle researchers will allow for more detailed examinations of the factors affecting satellite cell quiescence/activation and provide a novel cell source for the regenerative medicine and cellular agriculture fields.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factor de Transcripción PAX7 , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Ratones , Diferenciación Celular/fisiología , Células Cultivadas , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Separación Celular/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Desarrollo de Músculos/fisiología , Masculino
10.
J Proteome Res ; 23(8): 3096-3107, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38417049

RESUMEN

Fluorescence-activated cell sorting (FACS) is a specialized technique to isolate specific cell subpopulations with a high level of recovery and accuracy. However, the cell sorting procedure can impact the viability and metabolic state of cells. Here, we performed a comparative study and evaluated the impact of traditional high-pressure charged droplet-based and microfluidic chip-based sorting on the metabolic and phosphoproteomic profile of different cell types. While microfluidic chip-based sorted cells more closely resembled the unsorted control group for most cell types tested, the droplet-based sorted cells showed significant metabolic and phosphoproteomic alterations. In particular, greater changes in redox and energy status were present in cells sorted with the droplet-based cell sorter along with larger shifts in proteostasis. 13C-isotope tracing analysis on cells recovering postsorting revealed that the sorter-induced suppression of mitochondrial TCA cycle activity recovered faster in the microfluidic chip-based sorted group. Apart from this, amino acid and lipid biosynthesis pathways were suppressed in sorted cells, with minimum impact and faster recovery in the microfluidic chip-based sorted group. These results indicate microfluidic chip-based sorting has a minimum impact on metabolism and is less disruptive compared to droplet-based sorting.


Asunto(s)
Citometría de Flujo , Multiómica , Animales , Humanos , Separación Celular/métodos , Ciclo del Ácido Cítrico , Citometría de Flujo/métodos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/métodos , Proteómica/métodos
11.
Anal Chem ; 96(18): 6898-6905, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649796

RESUMEN

High-throughput single-cell analysis typically relies on the isolation of cells of interest in separate compartments for subsequent phenotypic or genotypic characterization. Using microfluidics, this is achieved by isolating individual cells in microdroplets or microwells. However, due to cell-to-cell variability in size, shape, and density, the cell capture efficiencies may vary significantly. This variability can negatively impact the measurements and introduce undesirable artifacts when trying to isolate and characterize heterogeneous cell populations. In this study, we show that single-cell isolation biases in microfluidics can be circumvented by increasing the viscosity of fluids in which cells are dispersed. At a viscosity of 40-50 cP (cP), the cell sedimentation is effectively reduced, resulting in a steady cell flow inside the microfluidics chip and consistent encapsulation in water-in-oil droplets over extended periods of time. This approach allows nearly all cells in a sample to be isolated with the same efficiency, irrespective of their type. Our results show that increased fluid viscosity, rather than cell-adjusted density, provides a more reliable approach to mitigate single-cell isolation biases.


Asunto(s)
Análisis de la Célula Individual , Viscosidad , Humanos , Técnicas Analíticas Microfluídicas , Separación Celular/métodos
12.
Anal Chem ; 96(1): 309-316, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108827

RESUMEN

The separation and analysis of circulating tumor cells (CTCs) in liquid biopsy significantly facilitated clinical cancer diagnosis and personalized therapy. However, current methods face challenges in simultaneous efficient capturing, separation, and imaging of CTCs, and most of the devices cannot be reused/regenerated. We present here an innovative glowing octopus-inspired nanomachine (GOIN), capable of capturing, imaging, separating, and controlling the release of cancer cells from whole blood and normal cells. The GOIN comprises an aptamer-decorated magnetic fluorescent covalent organic framework (COF), which exhibits a strong affinity for nucleolin-overexpressed cancer cells through a multivalent binding effect. The captured cancer cells can be directly imaged using the intrinsic stable fluorescence of the COF layer in the GOIN. Employing magnet and NIR laser assistance enables easy separation and mild photothermal release of CTCs from the normal cells and the nanomachine without compromising cell viability. Moreover, the GOIN demonstrates a reusing capability, as the NIR-triggered CTC release is mild and nondestructive, allowing the GOIN to be reused at least three times.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Separación Celular/métodos , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Diagnóstico por Imagen , Supervivencia Celular
13.
Anal Chem ; 96(2): 766-774, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38158582

RESUMEN

Microfluidic chips have emerged as a promising tool for sorting and enriching circulating tumor cells (CTCs) in blood, while the efficacy and purity of CTC sorting greatly depend on chip design. Herein, a novel cascaded phase-transfer microfluidic chip was developed for high-efficiency sorting, purification, release, and detection of MCF-7 cells (as a model CTC) in blood samples. MCF-7 cells were specifically captured by EpCAM aptamer-modified magnetic beads and then introduced into the designed cascaded phase-transfer microfluidic chip that consisted of three functional regions (sorting, purification, and release zone). In the sorting zone, the MCF-7 cells moved toward the inner wall of the channel and entered the purification zone for primary separation from white blood cells; in the purification zone, the MCF-7 cells were transferred to the phosphate-buffered saline flow under the interaction of Dean forces and central magnetic force, achieving high purification of MCF-7 cells from blood samples; in the release zone, MCF-7 cells were further transferred into the nuclease solution and fixed in groove by the strong magnetic force and hydrodynamic force, and the continuously flowing nuclease solution cleaved the aptamer on the trapped MCF-7 cells, causing gentle release of MCF-7 cells for subsequent inductively coupled plasma mass spectrometry (ICP-MS) detection or further cultivation. By measurement of the endogenous element Zn in the cells using ICP-MS for cell counting, an average cell recovery of 84% for MCF-7 cells was obtained in spiked blood samples. The developed method was applied in the analysis of real blood samples from healthy people and breast cancer patients, and CTCs were successfully detected in all tested patient samples (16/16). Additionally, the removal of the magnetic probes on the cell surface significantly improved cell viability up to 99.3%. Therefore, the developed cascaded phase-transfer microfluidic chip ICP-MS system possessed high integration for CTCs analysis with high cell viability, cell recovery, and purity, showing great advantages in early clinical cancer diagnosis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Microfluídica , Separación Celular/métodos , Línea Celular Tumoral , Técnicas Analíticas Microfluídicas/métodos , Fenómenos Magnéticos
14.
Anal Chem ; 96(37): 14809-14818, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39231502

RESUMEN

Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events. Unfortunately, current droplet sorting instruments have significant limitations, most notably related to analytical throughput and complex operation. In contrast, commercial fluorescence-activated cell sorters offer superior speed, sensitivity, and multiplexing capabilities, although their use as droplet sorters is poorly defined and underutilized. Herein, we present a universally applicable and simple-to-implement workflow for generating double emulsions and performing multicolor cell sorting using a commercial FACS instrument. This workflow achieves a double emulsion detection rate exceeding 90%, enabling multicellular encapsulation and high-throughput immune cell activation sorting for the first time. We anticipate that the presented droplet sorting strategy will benefit cell biology laboratories by providing access to an advanced microfluidic toolbox with minimal effort and cost investment.


Asunto(s)
Emulsiones , Citometría de Flujo , Citometría de Flujo/métodos , Emulsiones/química , Humanos , Colorantes Fluorescentes/química , Linfocitos T/citología , Color , Separación Celular/métodos , Animales
15.
Anal Chem ; 96(11): 4377-4384, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442207

RESUMEN

Low number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel in situ core-shell Cu ferrites consisting of the Cu-CuFe2O4 core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/Fe3O4 nanoparticle composite with pore diameter less than 200 µm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood. The system was assessed in different aspects including capturing the efficacy of the magnetic nanoparticles, CTC enrichment and isolation from large volumes of human blood, side effects on blood cells, and the viability of CTCs after isolation for further analysis. Under the optimized conditions, the CTC dialysis system exhibited more than 80% efficacy in the isolation of CTCs from blood samples. The isolated CTCs were viable and were able to proliferate. Moreover, the CTC dialysis system was safe and did not cause side effects on normal blood cells. Taken together, the designed CTC dialysis system can process a high volume of blood for efficient dual diagnostic and therapeutic purposes.


Asunto(s)
Compuestos Férricos , Nanoestructuras , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Microfluídica , Medicina de Precisión , Separación Celular/métodos , Diálisis Renal , Impresión Tridimensional , Fenómenos Magnéticos , Línea Celular Tumoral
16.
Anal Chem ; 96(17): 6764-6773, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619911

RESUMEN

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Asunto(s)
Separación Celular , Técnicas Analíticas Microfluídicas , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Porosidad , Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Polimetil Metacrilato/química
17.
Anal Chem ; 96(18): 6914-6921, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38655666

RESUMEN

BACKGROUND: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on the microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. METHODS: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility), resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. RESULTS: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogeneous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding a higher number of CTCs using acoustophoresis. CONCLUSION: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables the sensitive label-free enrichment of cells with epithelial phenotypes in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.


Asunto(s)
Separación Celular , Células Neoplásicas Circulantes , Neoplasias de la Próstata , Humanos , Masculino , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/sangre , Separación Celular/métodos , Acústica , Proyectos Piloto , Metástasis de la Neoplasia , Técnicas Analíticas Microfluídicas
18.
Anal Chem ; 96(35): 14222-14229, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39159467

RESUMEN

Circulating tumor cells (CTCs) are recognized as promising targets for liquid biopsy, which play an important role in early diagnosis and efficacy monitoring of cancer. However, due to the extreme scarcity of CTCs and partial size overlap between CTCs and white blood cells (WBCs), the separation and detection of CTCs from blood remain a big challenge. To address this issue, we fabricated a microfluidic chip by integrating a passive contraction-expansion array (CEA) inertial sorting zone and an active magnetophoresis zone with the trapezoidal groove and online coupled it with inductively coupled plasma mass spectrometry (ICP-MS) for rapid separation and precise detection of MCF-7 cells (as a model CTC) in blood samples. In the integrated microfluidic chip, most of the small-sized WBCs can be rapidly removed in the circular CEA inertial sorter, while the rest of the magnetically labeled WBCs can be further captured in the trapezoidal groove under the magnetic field. As a result, the rapid separation of MCF-7 cells from blood samples was achieved with an average recovery of 91.6% at a sample flow rate of 200 µL min-1. The developed online integrated inertial-magnetophoresis microfluidic chip-ICP-MS system has been applied for the detection of CTCs in real clinical blood samples with a fast analysis speed (5 min per 1 mL blood). CTCs were detected in all 24 blood samples from patients with different types of cancer, exhibiting excellent application potential in clinical diagnosis.


Asunto(s)
Separación Celular , Dispositivos Laboratorio en un Chip , Espectrometría de Masas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células MCF-7 , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación
19.
Anal Chem ; 96(26): 10780-10790, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889002

RESUMEN

This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.


Asunto(s)
Separación Celular , Activación de Linfocitos , Receptores Quiméricos de Antígenos , Linfocitos T , Linfocitos T/citología , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Inmunoterapia Adoptiva/métodos
20.
Small ; 20(23): e2307329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509856

RESUMEN

Single-cell arrays have emerged as a versatile method for executing single-cell manipulations across an array of biological applications. In this paper, an innovative microfluidic platform is unveiled that utilizes optoelectronic tweezers (OETs) to array and sort individual cells at a flow rate of 20 µL min-1. This platform is also adept at executing dielectrophoresis (DEP)-based, light-guided single-cell retrievals from designated micro-wells. This presents a compelling non-contact method for the rapid and straightforward sorting of cells that are hard to distinguish. Within this system, cells are individually confined to micro-wells, achieving an impressive high single-cell capture rate exceeding 91.9%. The roles of illuminating patterns, flow velocities, and applied electrical voltages are delved into in enhancing the single-cell capture rate. By integrating the OET system with the micro-well arrays, the device showcases adaptability and a plethora of functions. It can concurrently trap and segregate specific cells, guided by their dielectric signatures. Experimental results, derived from a mixed sample of HepG2 and L-O2 cells, reveal a sorting accuracy for L-O2 cells surpassing 91%. Fluorescence markers allow for the identification of sequestered, fluorescence-tagged HepG2 cells, which can subsequently be selectively released within the chip. This platform's rapidity in capturing and releasing individual cells augments its potential for future biological research and applications.


Asunto(s)
Pinzas Ópticas , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/instrumentación , Humanos , Separación Celular/instrumentación , Separación Celular/métodos , Microfluídica/métodos , Microfluídica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA