RESUMEN
It has been known that Ca2+ plays an essential role in mediating different modes of neurotransmitter release via different sensing mechanisms. Synaptotagmin 1, 2, and 9 were found to act as the Ca2+ sensors for synchronous release and synaptotagmin 7 and Doc-2 were proposed as the Ca2+ sensors for asynchronous release. Comparatively, the Ca2+ sensor for spontaneous release remains a mystery. At the Calyx of Held synapse, the Ca2+ sensor for spontaneous release was found not identical to the sensor for synchronous release, synaptotagmin 2. As Ca2+ sensors have different sensitivity to Sr2+ and Ca2+ and induce significantly different rate of vesicle release, Sr2+ is traditionally used as a tool to examine the intrinsic properties of different Ca2+ sensors. Here, we employed cell-attached patch recording and presynaptic/postsynaptic whole-cell recording at the Calyx of Held synapses of synaptotagmin 2 knock-out mice to assay the Sr2+ and Ca2+ influx into the nerve terminal at resting potential and observed the effects of Ca2+ and Sr2+ on spontaneous neurotransmitter release. We found that the dwell time of single voltage gated Ca2+ channel opening increased around threefold for Sr2+ than Ca2+ with the channel conductance unchanged; the divalent cation sensing machinery in regulating spontaneous release has much lower sensitivity to Sr2+ than Ca2+ . Thus, our study reveals some of the intrinsic properties of Ca2+ sensor(s) of spontaneous transmitter release and provided an insight into the underlying mechanisms.
Asunto(s)
Tronco Encefálico/metabolismo , Estroncio/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Tronco Encefálico/efectos de los fármacos , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Cationes Bivalentes/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Estroncio/administración & dosificación , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Sinaptotagmina II/deficiencia , Sinaptotagmina II/genética , Técnicas de Cultivo de TejidosRESUMEN
Ca2+-triggered synchronous neurotransmitter release is well described, but asynchronous release-in fact, its very existence-remains enigmatic. Here we report a quantitative description of asynchronous neurotransmitter release in calyx-of-Held synapses. We show that deletion of synaptotagmin 2 (Syt2) in mice selectively abolishes synchronous release, allowing us to study pure asynchronous release in isolation. Using photolysis experiments of caged Ca2+, we demonstrate that asynchronous release displays a Ca2+ cooperativity of approximately 2 with a Ca2+ affinity of approximately 44 microM, in contrast to synchronous release, which exhibits a Ca2+ cooperativity of approximately 5 with a Ca2+ affinity of approximately 38 muM. Our results reveal that release triggered in wild-type synapses at low Ca2+ concentrations is physiologically asynchronous, and that asynchronous release completely empties the readily releasable pool of vesicles during sustained elevations of Ca2+. We propose a dual-Ca2+-sensor model of release that quantitatively describes the contributions of synchronous and asynchronous release under conditions of different presynaptic Ca2+ dynamics.
Asunto(s)
Calcio/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/farmacología , Cinética , Ratones , Ratones Noqueados , Fotólisis , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina II/deficiencia , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismoAsunto(s)
Calcio/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/farmacología , Ratones , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina II/deficiencia , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismoRESUMEN
Synaptotagmins comprise a large protein family, of which synaptotagmin 1 (Syt1) is a Ca2+ sensor for fast exocytosis, and its close relative, synaptotagmin 2 (Syt2), is assumed to serve similar functions. Chromaffin cells express Syt1 but not Syt2. We compared secretion from chromaffin cells from Syt1 null mice overexpressing either Syt isoform. High time-resolution capacitance measurement showed that Syt1 null cells lack the exocytotic phase corresponding to the readily-releasable pool (RRP) of vesicles. Comparison with the amperometric signal confirmed that the missing phase of exocytosis consists of catecholamine-containing vesicles. Overexpression of Syt1 rescued the RRP and increased its size above wild-type values, whereas the size of the slowly releasable pool decreased, indicating that the availability of Syt1 regulates the relative size of the two releasable pools. The RRP was also rescued by Syt2 overexpression, but the kinetics of fusion was slightly slower than in cells expressing Syt1. Biochemical experiments showed that Syt2 has a slightly lower Ca2+ affinity for phospholipid binding than Syt1 because of a difference in the C2A domain. These data constitute evidence for the function of Syt1 and Syt2 as alternative, but not identical, calcium-sensors for RRP fusion. By overexpression of Syt1 mutated in the shared PKC/calcium/calmodulin-dependent kinase phosphorylation site, we show that phorbol esters act independently and upstream of Syt1 to regulate the size of the releasable pools. We conclude that exocytosis from mouse chromaffin cells can be modified by the differential expression of Syt isoforms and by Syt abundance but not by phosphorylation of Syt1.
Asunto(s)
Células Cromafines/fisiología , Exocitosis/fisiología , Procesamiento Proteico-Postraduccional , Sinaptotagmina II/fisiología , Sinaptotagmina I/fisiología , Animales , Sitios de Unión , Calcio/metabolismo , Catecolaminas/metabolismo , Células Cultivadas/fisiología , Liposomas/metabolismo , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Fosfolípidos/metabolismo , Fosforilación , Fotólisis , Unión Proteica , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/fisiología , Proteínas SNARE/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética , Sinaptotagmina II/química , Sinaptotagmina II/deficiencia , Sinaptotagmina II/genética , Acetato de Tetradecanoilforbol/farmacología , TransfecciónRESUMEN
Biochemical and genetic data suggest that synaptotagmin-2 functions as a Ca2+ sensor for fast neurotransmitter release in caudal brain regions, but animals and/or synapses lacking synaptotagmin-2 have not been examined. We have now generated mice in which the 5' end of the synaptotagmin-2 gene was replaced by lacZ. Using beta-galactosidase as a marker, we show that, consistent with previous studies, synaptotagmin-2 is widely expressed in spinal cord, brainstem, and cerebellum, but is additionally present in selected forebrain neurons, including most striatal neurons and some hypothalamic, cortical, and hippocampal neurons. Synaptotagmin-2-deficient mice were indistinguishable from wild-type littermates at birth, but subsequently developed severe motor dysfunction, and perished at approximately 3 weeks of age. Electrophysiological studies in cultured striatal neurons revealed that the synaptotagmin-2 deletion slowed the kinetics of evoked neurotransmitter release without altering the total amount of release. In contrast, synaptotagmin-2-deficient neuromuscular junctions (NMJs) suffered from a large reduction in evoked release and changes in short-term synaptic plasticity. Furthermore, in mutant NMJs, the frequency of spontaneous miniature release events was increased both at rest and during stimulus trains. Viewed together, our results demonstrate that the synaptotagmin-2 deficiency causes a lethal impairment in synaptic transmission in selected synapses. This impairment, however, is less severe than that produced in forebrain neurons by deletion of synaptotagmin-1, presumably because at least in NMJs, synaptotagmin-1 is coexpressed with synaptotagmin-2, and both together mediate fast Ca2+-triggered release. Thus, synaptotagmin-2 is an essential synaptotagmin isoform that functions in concert with other synaptotagmins in the Ca2+ triggering of neurotransmitter release.
Asunto(s)
Encéfalo/metabolismo , Calcio/fisiología , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Sinaptotagmina II/fisiología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Neuromuscular/genética , Neurotransmisores/genética , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Sinapsis/genética , Transmisión Sináptica/genética , Sinaptotagmina II/deficiencia , Sinaptotagmina II/genéticaRESUMEN
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to â¼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits.
Asunto(s)
Calcio/metabolismo , Sinapsis/metabolismo , Sinaptotagmina II/genética , Adenoviridae/genética , Animales , Cerebelo/metabolismo , Cerebelo/patología , Potenciales Evocados/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Ácidos Fosfínicos/farmacología , Células de Purkinje/metabolismo , Piridinas/farmacología , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/deficiencia , Sinaptotagmina II/metabolismoRESUMEN
The congenital myasthenic syndromes (CMS) are a diverse group of genetic disorders caused by abnormal signal transmission at the motor endplate, a special synaptic contact between motor axons and each skeletal muscle fibre. Most CMS stem from molecular defects in the muscle nicotinic acetylcholine receptor, but they can also be caused by mutations in presynaptic proteins, mutations in proteins associated with the synaptic basal lamina, defects in endplate development and maintenance, or defects in protein glycosylation. The specific diagnosis of some CMS can sometimes be reached by phenotypic clues pointing to the mutated gene. In the absence of such clues, exome sequencing is a useful technique for finding the disease gene. Greater understanding of the mechanisms of CMS have been obtained from structural and electrophysiological studies of the endplate, and from biochemical studies. Present therapies for the CMS include cholinergic agonists, long-lived open-channel blockers of the acetylcholine receptor ion channel, and adrenergic agonists. Although most CMS are treatable, caution should be exercised as some drugs that are beneficial in one syndrome can be detrimental in another.
Asunto(s)
Agonistas Adrenérgicos/uso terapéutico , Agonistas Colinérgicos/uso terapéutico , Mutación , Síndromes Miasténicos Congénitos , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/genética , Acetilcolinesterasa/genética , Colina O-Acetiltransferasa/deficiencia , Colágeno/genética , Exoma/genética , Humanos , Laminina/deficiencia , Laminina/genética , Proteínas Musculares/genética , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/metabolismo , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Receptores Colinérgicos/metabolismo , Análisis de Secuencia de ADN , Proteína 25 Asociada a Sinaptosomas/deficiencia , Sinaptotagmina II/deficienciaRESUMEN
Ca²+-evoked transmitter release shows a high dynamic range over spontaneous release. We investigated the role of the Ca²+ sensor protein, Synaptotagmin2 (Syt2), in both spontaneous and Ca²+-evoked release under direct control of presynaptic [Ca²+](i), using an in vivo rescue approach at the calyx of Held. Re-expression of Syt2 rescued the highly Ca²+ cooperative release and suppressed the elevated spontaneous release seen in Syt2 KO synapses. This latter release clamping function was partially mediated by the poly-lysine motif of the C2B domain. Using an aspartate mutation in the C2B domain (D364N) in which Ca²+ triggering was abolished but release clamping remained intact, we show that Syt2 strongly suppresses the action of another, near-linear Ca²+ sensor that mediates release over a wide range of [Ca²+](i). Thus, Syt2 increases the dynamic range of synapses by driving release with a high Ca²+ cooperativity, as well as by suppressing a remaining, near-linear Ca²+ sensor.
Asunto(s)
Vías Auditivas/metabolismo , Calcio/metabolismo , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Sinaptotagmina II/metabolismo , Animales , Animales Recién Nacidos , Asparagina/genética , Ácido Aspártico/genética , Vías Auditivas/citología , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Núcleo Coclear/citología , Estimulación Eléctrica/métodos , Lateralidad Funcional/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Mutación/genética , Dinámicas no Lineales , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Sinapsis/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Sinaptotagmina II/deficienciaRESUMEN
Ubiquitination, proteasome, caveolae and endosomes have been implicated in controlling protein kinase C alpha (PKC alpha) down-regulation. However, the molecular mechanism remained obscure. Here we show that endosomes and proteasome cooperate in phorbol ester 12-O-tetradecanoyl phorbol acetate (TPA)-induced down-regulation of PKC alpha. We show that following TPA treatment and translocation to the plasma membrane, PKC alpha undergoes multimonoubiquitination prior to its degradation by the proteasome. However, to reach the proteasome, PKC alpha must travel through the endocytic system from early to late endosomes. This route requires functional endosomes, whereby endosomal alkalinization, or ablation, abrogates completely PKC alpha degradation maintaining the enzyme at the plasma membrane. This route also depends on synaptotagmin (Syt) II and the Rab7 GTPase, whereby Syt II knock-down or expression of the GDP-locked Rab7 inactive mutant prevents PKC alpha degradation. We further show that proteasome plays a dual role, where an active proteasome is required for deubiquitination of PKC alpha, a step crucial to prevent PKC alpha targeting to the endocytic recycling compartment. Finally, we show that the association with rafts-localized cell surface proteins that internalize in a clathrin-independent fashion is necessary to allow the trafficking of PKC alpha from the plasma membrane to the proteasome, its ultimate degradation station.