Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96.359
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35148840

RESUMEN

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Virales/inmunología , Candida albicans/química , Mananos/inmunología , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Epítopos/inmunología , Inmunidad Innata , Inmunización , Inflamación/patología , Interferones/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Senos Paranasales/metabolismo , Subunidades de Proteína/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Factor de Transcripción ReIB/metabolismo , Células Vero , beta-Glucanos/metabolismo
2.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794143

RESUMEN

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Línea Celular , Farmacorresistencia Viral , Humanos , Inmunización Pasiva , Cinética , Fusión de Membrana , Modelos Moleculares , Pruebas de Neutralización , Serina Endopeptidasas/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Internalización del Virus , Sueroterapia para COVID-19
3.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157040

RESUMEN

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Asunto(s)
Metabolismo Energético , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Difusión , Glucógeno/metabolismo , Homeostasis , Modelos Biológicos , Solubilidad , Trehalosa , Viscosidad
4.
Cell ; 173(6): 1495-1507.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29706546

RESUMEN

Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.


Asunto(s)
Ciclo Celular , ADN/análisis , Proteoma/análisis , Proteómica/métodos , Ensamble y Desensamble de Cromatina , Análisis por Conglomerados , Células HeLa , Calor , Humanos , Espectrometría de Masas , Mitosis , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Solubilidad
5.
Nature ; 626(8001): 1019-1024, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418914

RESUMEN

The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.


Asunto(s)
Biopolímeros , Evolución Química , Péptidos , Proteínas , Estereoisomerismo , Biopolímeros/química , Ácidos Nucleicos/síntesis química , Ácidos Nucleicos/química , Origen de la Vida , Péptidos/química , Proteínas/síntesis química , Proteínas/química , Solubilidad
6.
Nature ; 628(8007): 326-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480891

RESUMEN

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.


Asunto(s)
Carbono , Técnicas de Química Sintética , Compuestos Heterocíclicos con 1 Anillo , Preparaciones Farmacéuticas , Carbono/química , Ciclización , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Solubilidad , Oxidación-Reducción , Fotoquímica , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Técnicas de Química Sintética/métodos
7.
Nature ; 631(8020): 449-458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898281

RESUMEN

De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.


Asunto(s)
Diseño Asistido por Computadora , Aprendizaje Profundo , Proteínas de la Membrana , Pliegue de Proteína , Solubilidad , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Estabilidad Proteica , Proteoma/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Prueba de Estudio Conceptual
8.
Nature ; 626(8000): 843-851, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267583

RESUMEN

HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase2 that is assembled from cohesively interacting phenylalanine-glycine (FG) repeats3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a 'self-translocating' capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.


Asunto(s)
Proteínas de la Cápside , Cápside , Glicina , VIH-1 , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Fenilalanina , Humanos , Transporte Activo de Núcleo Celular , Cápside/química , Cápside/metabolismo , Glicina/metabolismo , VIH-1/química , VIH-1/genética , VIH-1/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Permeabilidad , Fenilalanina/metabolismo , Solubilidad , Internalización del Virus , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo
9.
Nature ; 626(8000): 836-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267582

RESUMEN

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Asunto(s)
Proteínas de la Cápside , Glicina , VIH , Carioferinas , Imitación Molecular , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Fenilalanina , Humanos , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , Dipéptidos/química , Dipéptidos/metabolismo , Glicina/metabolismo , VIH/química , VIH/metabolismo , Técnicas In Vitro , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Permeabilidad , Fenilalanina/metabolismo , Solubilidad , Internalización del Virus , Cápside/química , Cápside/metabolismo
10.
Annu Rev Biochem ; 83: 553-84, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606139

RESUMEN

Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Animales , Calcineurina/química , Caseínas/química , Biología Computacional , Espectroscopía de Resonancia por Spin del Electrón , Fibrina/química , Fibrinógeno/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Fosvitina/química , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Solubilidad , Tripsina/química , Tripsinógeno/química , Difracción de Rayos X
11.
Nature ; 611(7937): 721-726, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108675

RESUMEN

Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.


Asunto(s)
Compuestos Bicíclicos con Puentes , Diseño de Fármacos , Heptanos , Aniones/química , Benceno/química , Compuestos Bicíclicos con Puentes/síntesis química , Compuestos Bicíclicos con Puentes/química , Descubrimiento de Drogas , Heptanos/síntesis química , Heptanos/química , Pentanos/síntesis química , Pentanos/química , Solubilidad
12.
Annu Rev Cell Dev Biol ; 30: 39-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288112

RESUMEN

Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.


Asunto(s)
Compartimento Celular , Líquido Intracelular/química , Animales , Compartimento Celular/fisiología , Citoplasma/química , Difusión , Entropía , Geles , Origen de la Vida , Transición de Fase , Solubilidad , Terminología como Asunto
13.
Mol Cell ; 79(2): 320-331.e9, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645369

RESUMEN

Valosin-containing protein (VCP)/p97 is an AAA-ATPase that extracts polyubiquitinated substrates from multimeric macromolecular complexes and biological membranes for proteasomal degradation. During p97-mediated extraction, the substrate is largely deubiquitinated as it is threaded through the p97 central pore. How p97-extracted substrates are targeted to the proteasome with few or no ubiquitins is unknown. Here, we report that p97-extracted membrane proteins undergo a second round of ubiquitination catalyzed by the cytosolic ubiquitin ligase RNF126. RNF126 interacts with transmembrane-domain-specific chaperone BAG6, which captures p97-liberated substrates. RNF126 depletion in cells diminishes the ubiquitination of extracted membrane proteins, slows down their turnover, and dramatically stabilizes otherwise transient intermediates in the cytosol. We reconstitute the reubiquitination of a p97-extracted, misfolded multispanning membrane protein with purified factors. Our results demonstrate that p97-extracted substrates need to rapidly engage ubiquitin ligase-chaperone pairs that rebuild the ubiquitin signal for proteasome targeting to prevent harmful accumulation of unfolded intermediates.


Asunto(s)
Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Catálisis , Citosol/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteolisis , Solubilidad , Ubiquitinación
14.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31995729

RESUMEN

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Asunto(s)
Aminopeptidasas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Citoplasma/metabolismo , Mutación , Unión Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Proteínas de Transporte Vesicular/genética
15.
Annu Rev Genet ; 53: 171-194, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430179

RESUMEN

We have made rapid progress in recent years in identifying the genetic causes of many human diseases. However, despite this recent progress, our mechanistic understanding of these diseases is often incomplete. This is a problem because it limits our ability to develop effective disease treatments. To overcome this limitation, we need new concepts to describe and comprehend the complex mechanisms underlying human diseases. Condensate formation by phase separation emerges as a new principle to explain the organization of living cells. In this review, we present emerging evidence that aberrant forms of condensates are associated with many human diseases, including cancer, neurodegeneration, and infectious diseases. We examine disease mechanisms driven by aberrant condensates, and we point out opportunities for therapeutic interventions. We conclude that phase separation provides a useful new framework to understand and fight some of the most severe human diseases.


Asunto(s)
Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Orgánulos/química , Proteínas/química , Proteínas/metabolismo , Humanos , Infecciones/patología , Orgánulos/metabolismo , Orgánulos/patología , Solubilidad
16.
Nature ; 594(7861): 66-70, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079137

RESUMEN

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Asunto(s)
Lagos/química , Oxígeno/análisis , Oxígeno/metabolismo , Temperatura , Animales , Cambio Climático , Ecosistema , Océanos y Mares , Oxígeno/química , Fitoplancton/metabolismo , Solubilidad , Factores de Tiempo
17.
Nature ; 593(7858): 228-232, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981051

RESUMEN

The magnitude of global cooling during the Last Glacial Maximum (LGM, the coldest multimillennial interval of the last glacial period) is an important constraint for evaluating estimates of Earth's climate sensitivity1,2. Reliable LGM temperatures come from high-latitude ice cores3,4, but substantial disagreement exists between proxy records in the low latitudes1,5-8, where quantitative low-elevation records on land are scarce. Filling this data gap, noble gases in ancient groundwater record past land surface temperatures through a direct physical relationship that is rooted in their temperature-dependent solubility in water9,10. Dissolved noble gases are suitable tracers of LGM temperature because of their complete insensitivity to biological and chemical processes and the ubiquity of LGM-aged groundwater around the globe11,12. However, although several individual noble gas studies have found substantial tropical LGM cooling13-16, they have used different methodologies and provide limited spatial coverage. Here we use noble gases in groundwater to show that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) cooled by 5.8 ± 0.6 degrees Celsius (mean ± 95% confidence interval) during the LGM. Our analysis includes four decades of groundwater noble gas data from six continents, along with new records from the tropics, all of which were interpreted using the same physical framework. Our land-based result broadly supports a recent reconstruction based on marine proxy data assimilation1 that suggested greater climate sensitivity than previous estimates5-7.


Asunto(s)
Cambio Climático/historia , Clima , Frío , Cubierta de Hielo , Altitud , Agua Subterránea/química , Historia Antigua , Gases Nobles/análisis , Reproducibilidad de los Resultados , Solubilidad
18.
Nature ; 592(7853): 283-289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524990

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , SARS-CoV-2/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Línea Celular , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunización Pasiva , Internacionalidad , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Multimerización de Proteína , ARN Viral/análisis , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Sueroterapia para COVID-19 , Vacunas de ARNm
19.
Mol Cell ; 76(2): 295-305, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31604601

RESUMEN

Biomolecular condensation is emerging as an essential process for cellular compartmentalization. The formation of biomolecular condensates can be driven by liquid-liquid phase separation, which arises from weak, multivalent interactions among proteins and nucleic acids. A substantial body of recent work has revealed that diverse cellular processes rely on biomolecular condensation and that aberrant phase separation may cause disease. Many proteins display an intrinsic propensity to undergo phase separation. However, the mechanisms by which cells regulate phase separation to build functional condensates at the appropriate time and location are only beginning to be understood. Here, we review three key cellular mechanisms that enable the control of biomolecular phase separation: membrane surfaces, post-translational modifications, and active processes. We discuss how these mechanisms may function in concert to provide robust control over biomolecular condensates and suggest new research avenues that will elucidate how cells build and maintain these key centers of cellular compartmentalization.


Asunto(s)
Compartimento Celular , Membrana Celular/metabolismo , Ácidos Nucleicos/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas/metabolismo , Animales , Membrana Celular/química , Endocitosis , Humanos , Membranas Intracelulares/metabolismo , Chaperonas Moleculares/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Conformación Proteica , Proteínas/química , Solubilidad , Relación Estructura-Actividad
20.
Mol Cell ; 73(5): 971-984.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661983

RESUMEN

Both the timing and kinetics of neurotransmitter release depend on the positioning of clustered Ca2+ channels in active zones to docked synaptic vesicles on presynaptic plasma membranes. However, how active zones form is not known. Here, we show that RIM and RIM-BP, via specific multivalent bindings, form dynamic and condensed assemblies through liquid-liquid phase separation. Voltage-gated Ca2+ channels (VGCCs), via C-terminal-tail-mediated direct binding to both RIM and RIM-BP, can be enriched to the RIM and RIM-BP condensates. We further show that RIM and RIM-BP, together with VGCCs, form dense clusters on the supported lipid membrane bilayers via phase separation. Therefore, RIMs and RIM-BPs are plausible organizers of active zones, and the formation of RIM and RIM-BP condensates may cluster VGCCs into nano- or microdomains and position the clustered Ca2+ channels with Ca2+ sensors on docked vesicles for efficient and precise synaptic transmissions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio Tipo N/metabolismo , Proteínas de Unión al GTP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Terminales Presinápticos/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sitios de Unión , Canales de Calcio Tipo N/genética , Proteínas de Unión al GTP/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Solubilidad , Membranas Sinápticas/genética , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA