Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.305
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 615(7952): 472-481, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859544

RESUMEN

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Asunto(s)
Encéfalo , Meninges , Meningitis Bacterianas , Neuroinmunomodulación , Humanos , Encéfalo/inmunología , Encéfalo/microbiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Meninges/inmunología , Meninges/microbiología , Meninges/fisiopatología , Dolor/etiología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Meningitis Bacterianas/complicaciones , Meningitis Bacterianas/inmunología , Meningitis Bacterianas/microbiología , Meningitis Bacterianas/patología , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/patogenicidad , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/patogenicidad , Nociceptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo
2.
N Engl J Med ; 389(3): 215-227, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37467497

RESUMEN

BACKGROUND: Natural history studies have correlated serotype-specific anti-capsular polysaccharide (CPS) IgG in newborns with a reduced risk of group B streptococcal disease. A hexavalent CPS-cross-reactive material 197 glycoconjugate vaccine (GBS6) is being developed as a maternal vaccine to prevent invasive group B streptococcus in young infants. METHODS: In an ongoing phase 2, placebo-controlled trial involving pregnant women, we assessed the safety and immunogenicity of a single dose of various GBS6 formulations and analyzed maternally transferred anti-CPS antibodies. In a parallel seroepidemiologic study that was conducted in the same population, we assessed serotype-specific anti-CPS IgG concentrations that were associated with a reduced risk of invasive disease among newborns through 89 days of age to define putative protective thresholds. RESULTS: Naturally acquired anti-CPS IgG concentrations were associated with a reduced risk of disease among infants in the seroepidemiologic study. IgG thresholds that were determined to be associated with 75 to 95% reductions in the risk of disease were 0.184 to 0.827 µg per milliliter. No GBS6-associated safety signals were observed among the mothers or infants. The incidence of adverse events and of serious adverse events were similar across the trial groups for both mothers and infants; more local reactions were observed in the groups that received GBS6 containing aluminum phosphate. Among the infants, the most common serious adverse events were minor congenital anomalies (umbilical hernia and congenital dermal melanocytosis). GBS6 induced maternal antibody responses to all serotypes, with maternal-to-infant antibody ratios of approximately 0.4 to 1.3, depending on the dose. The percentage of infants with anti-CPS IgG concentrations above 0.184 µg per milliliter varied according to serotype and formulation, with 57 to 97% of the infants having a seroresponse to the most immunogenic formulation. CONCLUSIONS: GBS6 elicited anti-CPS antibodies against group B streptococcus in pregnant women that were transferred to infants at levels associated with a reduced risk of invasive group B streptococcal disease. (Funded by Pfizer and the Bill and Melinda Gates Foundation; C1091002 ClinicalTrials.gov number, NCT03765073.).


Asunto(s)
Infecciones Estreptocócicas , Vacunas Estreptocócicas , Streptococcus agalactiae , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Anticuerpos Antibacterianos , Inmunoglobulina G , Estudios Seroepidemiológicos , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/inmunología , Vacunas Combinadas/uso terapéutico , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/efectos adversos , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/efectos adversos , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/uso terapéutico , Inmunidad Materno-Adquirida/inmunología
3.
EMBO J ; 40(7): e106103, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522633

RESUMEN

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed ß protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in ß represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.


Asunto(s)
Adhesinas Bacterianas/química , Antígenos CD/química , Antígeno Carcinoembrionario/química , Moléculas de Adhesión Celular/química , Adhesinas Bacterianas/metabolismo , Animales , Antígenos CD/metabolismo , Sitios de Unión , Células CHO , Antígeno Carcinoembrionario/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Células HeLa , Humanos , Unión Proteica , Streptococcus agalactiae/metabolismo
4.
PLoS Biol ; 20(2): e3001555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180210

RESUMEN

Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood-brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host-pathogen interface.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glucolípidos/metabolismo , Meningitis/metabolismo , Streptococcus agalactiae/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Cationes/química , Cromatografía Liquida/métodos , Glucolípidos/química , Humanos , Masculino , Ratones , Mutación , Espectrometría de Masa por Ionización de Electrospray/métodos , Streptococcus agalactiae/genética , Espectrometría de Masas en Tándem/métodos
5.
Nature ; 572(7769): 329-334, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367035

RESUMEN

We sought to determine whether pre-eclampsia, spontaneous preterm birth or the delivery of infants who are small for gestational age were associated with the presence of bacterial DNA in the human placenta. Here we show that there was no evidence for the presence of bacteria in the large majority of placental samples, from both complicated and uncomplicated pregnancies. Almost all signals were related either to the acquisition of bacteria during labour and delivery, or to contamination of laboratory reagents with bacterial DNA. The exception was Streptococcus agalactiae (group B Streptococcus), for which non-contaminant signals were detected in approximately 5% of samples collected before the onset of labour. We conclude that bacterial infection of the placenta is not a common cause of adverse pregnancy outcome and that the human placenta does not have a microbiome, but it does represent a potential site of perinatal acquisition of S. agalactiae, a major cause of neonatal sepsis.


Asunto(s)
Parto Obstétrico , Complicaciones del Trabajo de Parto/microbiología , Placenta/microbiología , Complicaciones Infecciosas del Embarazo/microbiología , Sepsis/congénito , Sepsis/microbiología , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/patogenicidad , Biopsia , Estudios de Cohortes , Contaminación de ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Femenino , Humanos , Recién Nacido , Masculino , Metagenómica , Embarazo , Resultado del Embarazo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
6.
J Bacteriol ; 206(6): e0008724, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38771039

RESUMEN

Bacterial meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when bacteria are able to cross the blood-brain barrier (BBB) or the meningeal-cerebrospinal fluid barrier (mBCSFB). The BBB and mBCSFB comprise highly specialized brain endothelial cells (BECs) that typically restrict pathogen entry. Group B Streptococcus (GBS or Streptococcus agalactiae) is the leading cause of neonatal meningitis. Until recently, identification of GBS virulence factors has relied on genetic screening approaches. Instead, we here conducted RNA-seq analysis on GBS when interacting with induced pluripotent stem cell-derived BECs (iBECs) to pinpoint virulence-associated genes. Of the 2,068 annotated protein-coding genes of GBS, 430 transcripts displayed significant changes in expression after interacting with BECs. Notably, we found that the majority of differentially expressed GBS transcripts were downregulated (360 genes) during infection of iBECs. Interestingly, codY, encoding a pleiotropic transcriptional repressor in low-G + C Gram-positive bacteria, was identified as being highly downregulated. We conducted qPCR to confirm the codY downregulation observed via RNA-seq during the GBS-iBEC interaction and obtained codY mutants in three different GBS background parental strains. As anticipated from the RNA-seq results, the [Formula: see text]codY strains were more adherent and invasive in two in vitro BEC models. Together, this demonstrates the utility of RNA-seq during the BEC interaction to identify GBS virulence modulators. IMPORTANCE: Group B Streptococcus (GBS) meningitis remains the leading cause of neonatal meningitis. Research work has identified surface factors and two-component systems that contribute to GBS disruption of the blood-brain barrier (BBB). These discoveries often relied on genetic screening approaches. Here, we provide transcriptomic data describing how GBS changes its transcriptome when interacting with brain endothelial cells. Additionally, we have phenotypically validated these data by obtaining mutants of a select regulator that is highly down-regulated during infection and testing on our BBB model. This work provides the research field with a validated data set that can provide an insight into potential pathways that GBS requires to interact with the BBB and open the door to new discoveries.


Asunto(s)
Encéfalo , Células Endoteliales , Streptococcus agalactiae , Transcriptoma , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad , Células Endoteliales/microbiología , Humanos , Encéfalo/microbiología , Encéfalo/metabolismo , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Meningitis Bacterianas/microbiología
7.
Infect Immun ; 92(4): e0006224, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38514466

RESUMEN

Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.


Asunto(s)
Meningitis , Infecciones Estreptocócicas , Recién Nacido , Humanos , Streptococcus agalactiae , Infecciones Estreptocócicas/microbiología , Macrófagos , Células Clonales
8.
Proteins ; 92(3): 427-431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921533

RESUMEN

A 1.7 Å structure is presented for an active form of the virulence factor ScpB, the C5a peptidase from Streptococcus agalactiae. The previously reported structure of the ScpB active site mutant exhibited a large separation (~20 Å) between the catalytic His and Ser residues. Significant differences are observed in the catalytic domain between the current and mutant ScpB structures resulting with a high RMSDCα (4.6 Å). The fold of the active form of ScpB is nearly identical to ScpA (RMSDCα 0.2 Å), the C5a-peptidase from Streptococcus pyogenes. Both ScpA and ScpB have comparable activity against human C5a, indicating neither enzyme require host proteins for C5a-ase activity. These studies are a first step in resolving reported differences in the specificities of these enzymes.


Asunto(s)
Endopeptidasas , Streptococcus agalactiae , Humanos , Streptococcus agalactiae/metabolismo , Dominio Catalítico , Endopeptidasas/química , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Catálisis , Streptococcus pyogenes
9.
Emerg Infect Dis ; 30(6): 1228-1231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782033
10.
Mol Microbiol ; 120(2): 258-275, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357823

RESUMEN

Type VIIb secretion systems (T7SSb) in Gram-positive bacteria facilitate physiology, interbacterial competition, and/or virulence via EssC ATPase-driven secretion of small ɑ-helical proteins and toxins. Recently, we characterized T7SSb in group B Streptococcus (GBS), a leading cause of infection in newborns and immunocompromised adults. GBS T7SS comprises four subtypes based on variation in the C-terminus of EssC and the repertoire of downstream effectors; however, the intraspecies diversity of GBS T7SS and impact on GBS-host interactions remains unknown. Bioinformatic analysis indicates that GBS T7SS loci encode subtype-specific putative effectors, which have low interspecies and inter-subtype homology but contain similar domains/motifs and therefore may serve similar functions. We further identify orphaned GBS WXG100 proteins. Functionally, we show that GBS T7SS subtype I and III strains secrete EsxA in vitro and that in subtype I strain CJB111, esxA1 appears to be differentially transcribed from the T7SS operon. Furthermore, we observe subtype-specific effects of GBS T7SS on host colonization, as CJB111 subtype I but not CNCTC 10/84 subtype III T7SS promotes GBS vaginal colonization. Finally, we observe that T7SS subtypes I and II are the predominant subtypes in clinical GBS isolates. This study highlights the potential impact of T7SS heterogeneity on host-GBS interactions.


Asunto(s)
Infecciones Estreptocócicas , Sistemas de Secreción Tipo VII , Recién Nacido , Femenino , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VII/genética , Virulencia , Operón/genética , Genitales Femeninos/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Vagina/metabolismo , Vagina/microbiología
11.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656296

RESUMEN

Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus agalactiae , Factores de Virulencia , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Femenino , Infecciones Estreptocócicas/microbiología , Ratones , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Recuento de Colonia Microbiana , Virulencia , Modelos Animales de Enfermedad , Embarazo
12.
Biol Reprod ; 110(2): 329-338, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37903065

RESUMEN

Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased ß-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced ß-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1ß confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.


Asunto(s)
Amnios , Interleucina-8 , Femenino , Humanos , Recién Nacido , Embarazo , Amnios/metabolismo , beta-Galactosidasa , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Células Epiteliales/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Streptococcus agalactiae/metabolismo , Interleucina-1
13.
PLoS Pathog ; 18(7): e1010607, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35862444

RESUMEN

Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival.


Asunto(s)
Cobre , Zinc , Animales , Bacterias , Fenómenos Fisiológicos Celulares , Homeostasis , Humanos , Ratones , Streptococcus agalactiae/genética
14.
PLoS Pathog ; 18(3): e1010397, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35316308

RESUMEN

Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.


Asunto(s)
Meningitis Bacterianas , Infecciones Estreptocócicas , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Humanos , Recién Nacido , Meningitis Bacterianas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae , Vimentina/metabolismo , Virulencia
15.
Mol Syst Biol ; 19(3): e11021, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36744393

RESUMEN

Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin ß-hemolysin/cytolysin (ß-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of ß-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through ß-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a ß-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that ß-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.


Asunto(s)
Placenta , Infecciones Estreptocócicas , Ratones , Animales , Femenino , Embarazo , Humanos , Placenta/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Inflamación , Macrófagos , Infecciones Estreptocócicas/metabolismo
16.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909237

RESUMEN

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Asunto(s)
Adhesinas Bacterianas , Adhesión Bacteriana , Fibronectinas , Unión Proteica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidad , Fibronectinas/metabolismo , Humanos , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Fibrinógeno/metabolismo , Fibrinógeno/genética , Células Epiteliales/microbiología , Femenino , Infecciones Estreptocócicas/microbiología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética
17.
Microb Pathog ; 191: 106675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705216

RESUMEN

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Asunto(s)
Citocinas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Serogrupo , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/patogenicidad , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/genética , Ratones , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/inmunología , China , Citocinas/metabolismo , Citocinas/sangre , Femenino , Pakistán , Carga Bacteriana , Bovinos , Dosificación Letal Mediana , Mastitis Bovina/microbiología
18.
Microb Pathog ; 192: 106683, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735447

RESUMEN

Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.


Asunto(s)
Membrana Celular , Enfermedades de los Peces , Evasión Inmune , Infecciones Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Streptococcus agalactiae/enzimología , Streptococcus agalactiae/inmunología , Animales , Virulencia , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/inmunología , Membrana Celular/metabolismo , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Adhesión Bacteriana , Macrófagos/microbiología , Macrófagos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Serina Proteasas/genética , Serina Proteasas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Ratones
19.
Microb Pathog ; 187: 106533, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171428

RESUMEN

Mastitis significantly affects the udder tissue in dairy cattle, leading to inflammation, discomfort, and a decline in both milk yield and quality. The condition can be attributed to an array of microbial agents that access the mammary gland through multiple pathways. The ramifications of this ailment are not merely confined to animal welfare but extend to the financial viability of the livestock industry. This review offers a historical lens on mastitis, tracing its documentation back to 1851, and examines its global distribution with a focus on regional differences in prevalence and antimicrobial resistance (AMR) patterns. Specific microbial genes and communities implicated in both mastitis and AMR are explored, including Staphylococcus aureus, Streptococcus agalactiae,Streptococcus dysagalactiae, Streptococcus uberis Escherichia coli, Klebsiella pneumoniae, Mycoplasma bovis, Corynebacterium bovis, among others. These microorganisms have evolved diverse strategies to elude host immune responses and neutralize commonly administered antibiotics, complicating management efforts. The review aims a comprehensive overview of the current knowledge and research gaps on mastitis and AMR, and to highlight the need for a One Health approach to address this global health issue. Such an approach entails multi-disciplinary cooperation to foster judicious antibiotic use, enhance preventive measures against mastitis, and bolster surveillance and monitoring of AMR in pathogens responsible for mastitis.


Asunto(s)
Mastitis Bovina , Microbiota , Animales , Femenino , Bovinos , Humanos , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Streptococcus agalactiae , Leche/microbiología , Escherichia coli , Mastitis Bovina/epidemiología , Mastitis Bovina/prevención & control , Mastitis Bovina/metabolismo
20.
Vet Res ; 55(1): 60, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750480

RESUMEN

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Asunto(s)
Proteínas Bacterianas , Enfermedades de los Peces , Infecciones Estreptocócicas , Streptococcus agalactiae , Estrés Fisiológico , Streptococcus agalactiae/fisiología , Streptococcus agalactiae/patogenicidad , Streptococcus agalactiae/genética , Virulencia , Animales , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Enfermedades de los Peces/microbiología , Cíclidos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ratones , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA