Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
Más filtros

Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 67(4): e0160122, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36916920

RESUMEN

Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.


Asunto(s)
Antimaláricos , Malaria Falciparum , Niño , Femenino , Humanos , Embarazo , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Angola , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Combinación de Medicamentos , Tetrahidrofolato Deshidrogenasa/genética , Resistencia a Medicamentos/genética
2.
Antimicrob Agents Chemother ; 67(12): e0058823, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37947766

RESUMEN

Malaria molecular surveillance remains critical in detecting and tracking emerging parasite resistance to anti-malarial drugs. The current study employed molecular techniques to determine Plasmodium species prevalence and characterize the genetic diversity of Plasmodium falciparum and Plasmodium malariae molecular markers of sulfadoxine-pyrimethamine resistance in humans and wild Anopheles mosquito populations in Cameroon. Anopheles mosquito collections and parasitological survey were conducted in villages to determine Plasmodium species infection, and genomic phenotyping of anti-folate resistance was accomplished by sequencing the dihydrofolate-reductase (dhfr) and dihydropteroate-synthase (dhps) genes of naturally circulating P. falciparum and P. malariae isolates. The malaria prevalence in Elende was 73.5% with the 5-15 years age group harboring significant P. falciparum (27%) and P. falciparum + P. malariae (19%) infections. The polymorphism breadth of the pyrimethamine-associated Pfdhfr marker revealed a near fixation (94%) of the triple-mutant -A16I51R59N108I164. The Pfdhps backbone mediating sulfadoxine resistance reveals a high frequency of the V431A436G437K540A581A613 alleles (20.8%). Similarly, the Pmdhfr N50K55L57R58S59S114F168I170 haplotype (78.4%) was predominantly detected in the asexual blood stage. In contrast, the Pmdhps- S436A437occured at 37.2% frequency. The combined quadruple N50K55L57R58S59S114F168I170_ S436G437K540A581A613 (31.9%) was the major circulating haplotype with similar frequency in humans and mosquitoes. This study highlights the increasing frequency of the P. malariae parasite mostly common in asymptomatic individuals with apparent P. falciparum infection. Interventions directed at reducing malaria transmission such as the scaling-up of SP are favoring the emergence and spread of multiple drug-resistant alleles between the human and mosquito host systems.


Asunto(s)
Anopheles , Antimaláricos , Malaria Falciparum , Malaria , Animales , Humanos , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Anopheles/genética , Alelos , Camerún/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Combinación de Medicamentos , Plasmodium falciparum , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/genética , Resistencia a Medicamentos/genética , Tetrahidrofolato Deshidrogenasa/genética
3.
J Antimicrob Chemother ; 78(3): 665-668, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36611259

RESUMEN

BACKGROUND: A new mutation in the Plasmodium falciparum dihydropteroate synthetase gene (pfdhps), I431V, has been identified in several countries of Central and West Africa. This mutation is mostly found in association with four other SNPs on pfdhps (S436A, A437G, A581G and A613S), forming a quintuple mutant (vagKgs) and almost always associated with the Plasmodium falciparum dihydrofolate reductase gene (pfdhfr) CirnI (C50R, N51I, S108N) triple mutant. To date, nothing is known about the impact of this new pfdhps genotype on sulfadoxine-pyrimethamine (SP) resistance. OBJECTIVES: We sought to assess the prevalence of this pfdhps vagKgs quintuple mutant in two groups of pregnant women with malaria, one that took intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and one that did not. METHODS: The pfdhfr and pfdhps genes from Plasmodium falciparum isolates collected in Yaoundé (Cameroon) from pregnant women with symptomatic malaria under IPTp-SP or not, were sequenced. RESULTS: Of 159 patients evaluated, 70 had already taken SP during pregnancy and 89 had never taken SP. Only the vagKgs allele was significantly overrepresented in the SP+ group (21.4% versus 3.4%; P < 0.001), whereas the ISgKAA mutant, widely distributed in this area and known to be less susceptible to SP, tended to be less abundant in this group (48.6% versus 64.0%; P = 0.0503). CONCLUSIONS: We found a strong overrepresentation of the CirnI/vagKgs haplotype in the IPTp-SP pregnant group, suggesting a high level of resistance of this mutant to SP. This could compromise not only the effectiveness of IPTp-SP but also the seasonal malaria chemoprevention of young children, now widely implemented.


Asunto(s)
Antimaláricos , Malaria Falciparum , Pirimetamina , Sulfadoxina , Niño , Preescolar , Femenino , Humanos , Embarazo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Camerún , Quimioprevención/métodos , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Mutación , Plasmodium falciparum/genética , Mujeres Embarazadas , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico
4.
Malar J ; 22(1): 213, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474966

RESUMEN

BACKGROUND: Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS: Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS: Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION: The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Niño , Femenino , Embarazo , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Burkina Faso , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Mutación , Tetrahidrofolato Deshidrogenasa/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Codón
5.
PLoS Genet ; 16(12): e1009268, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382691

RESUMEN

Plasmodium falciparum parasites resistant to antimalarial treatments have hindered malaria disease control. Sulfadoxine-pyrimethamine (SP) was used globally as a first-line treatment for malaria after wide-spread resistance to chloroquine emerged and, although replaced by artemisinin combinations, is currently used as intermittent preventive treatment of malaria in pregnancy and in young children as part of seasonal malaria chemoprophylaxis in sub-Saharan Africa. The emergence of SP-resistant parasites has been predominantly driven by cumulative build-up of mutations in the dihydrofolate reductase (pfdhfr) and dihydropteroate synthetase (pfdhps) genes, but additional amplifications in the folate pathway rate-limiting pfgch1 gene and promoter, have recently been described. However, the genetic make-up and prevalence of those amplifications is not fully understood. We analyse the whole genome sequence data of 4,134 P. falciparum isolates across 29 malaria endemic countries, and reveal that the pfgch1 gene and promoter amplifications have at least ten different forms, occurring collectively in 23% and 34% in Southeast Asian and African isolates, respectively. Amplifications are more likely to be present in isolates with a greater accumulation of pfdhfr and pfdhps substitutions (median of 1 additional mutations; P<0.00001), and there was evidence that the frequency of pfgch1 variants may be increasing in some African populations, presumably under the pressure of SP for chemoprophylaxis and anti-folate containing antibiotics used for the treatment of bacterial infections. The selection of P. falciparum with pfgch1 amplifications may enhance the fitness of parasites with pfdhfr and pfdhps substitutions, potentially threatening the efficacy of this regimen for prevention of malaria in vulnerable groups. Our work describes new pfgch1 amplifications that can be used to inform the surveillance of SP drug resistance, its prophylactic use, and future experimental work to understand functional mechanisms.


Asunto(s)
Dihidropteroato Sintasa/genética , Resistencia a Medicamentos , GTP Ciclohidrolasa/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/farmacología , Sulfadoxina/farmacología
6.
Malar J ; 21(1): 306, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307852

RESUMEN

BACKGROUND: Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. METHODS: The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether-lumefantrine conducted in 2018-2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72-76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. RESULTS: All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. CONCLUSIONS: Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Cloroquina/farmacología , Cloroquina/uso terapéutico , Colombia , Malaria Falciparum/epidemiología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Polimorfismo Genético , Codón
7.
Malar J ; 21(1): 39, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135546

RESUMEN

BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Amodiaquina/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Quimioprevención , Niño , Preescolar , Estudios Transversales , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Humanos , Lactante , Recién Nacido , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum/genética , Pirimetamina/farmacología , Estaciones del Año , Sulfadoxina/farmacología
8.
Malar J ; 21(1): 394, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566182

RESUMEN

BACKGROUND: Despite significant progress in eliminating malaria from the state of Odisha, India, the disease is still considered endemic. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been introduced since 2010 as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artesunate (ART) in P. falciparum parasites circulating in the state. METHODS: A total of 239 isolates of P. falciparum mono infection were collected during July 2018-November 2020 from the four different geographical regions of the state. Genomic DNA was extracted from 200 µL of venous blood and amplified using nested polymerase chain reaction. Mutations on gene associated with CQ (Pfcrt and Pfmdr1) were assessed by PCR amplification and restriction fragment length polymorphism, artemisinin (Pfk13) gene by DNA sequencing and SP (Pfdhfr and Pfdhps) genes by allele-specific polymerase chain reaction (AsPCR). RESULTS: The point mutation in Pfcrt (K76T) was detected 2.1%, in Pfmdr1 (N86Y) 3.4%, and no mutations were found in Pfkelch13 propeller domain. Prevalence of Pfdhfr, Pfdhps and Pfhdfr-Pfdhps (two locus) gene mutations were 50.43%, 47.05% and 49.79% respectively. The single, double, triple and quadruple point mutations in Pfdhfr gene was 11.2%, 8.2%, 17.2% and 3.4% while, in Pfdhps gene was 10.9%,19.5%, 9.5% and 2.7% respectively. Of the total 13 haplotypes found in Pfdhfr, 8 were detected for the first time in the state and of the total 26 haplotypes found in Pfdhps, 7 were detected for the fisrt time in the state. The linked quintuple mutation Pfdhfr (N51I-C59R-S108N)-Pfdhps (A437G-K540E) responsible for clinical failure (RIII level of resistance) of SP resistance and A16V-S108T mutation in Pfdhfr responsible for cycloguanil was absent. CONCLUSION: The study has demonstrated a low prevalence of CQ resistance alleles in the study area. Despite the absence of the Pfkelch13 mutations, high prevalence of Pfdhfr and Pfdhps point mutations undermine the efficacy of SP partner drug, thereby threatening the P. falciparum malaria treatment policy. Therefore, continuous molecular and in vivo monitoring of ACT efficacy is warranted in Odisha.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , India/epidemiología
9.
Parasitol Res ; 121(10): 2765-2774, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35980472

RESUMEN

A plethora of studies analyse the molecular markers of drug resistance and hence help in guiding the evidence-based malaria treatment policies in India. For reporting mutations, a number of techniques including DNA sequencing, restriction-fragment length polymorphism and mutation-specific polymerase chain reaction have been employed across numerous studies, including variations in the methodology used. However, there is no sufficient data from India comparing these methods as well as report the prevalence of polymorphisms in SP drug resistance molecular markers independently using such methods. Therefore, all data from Indian studies available for molecular marker studies of Plasmodium falciparum drug resistance to sulphadoxine-pyrimethamine was gathered, and a systematic review was performed. This systematic review identifies the molecular methods in use in India and compares each method for detecting sulphadoxine-pyrimethamine drug resistance marker. To delay the spread of drug-resistant parasite strains, a simplified and standardized molecular method is much needed which can be obtained by analysing the performance of each method in use and answering the necessity of newer methodological approaches.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Humanos , India/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico
10.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615340

RESUMEN

The continual rise in sulfadoxine (SDX) resistance affects the therapeutic efficacy of sulfadoxine-pyrimethamine; therefore, careful monitoring will help guide its prolonged usage. Mutations in Plasmodium falciparum dihydropteroate synthase (Pfdhps) are being surveilled, based on their link with SDX resistance. However, there is a lack of continuous analyses and data on the potential effect of molecular markers on the Pfdhps structure and function. This study explored single-nucleotide polymorphisms (SNPs) in Pfdhps that were isolated in Africa and other countries, highlighting the regional distribution and its link with structure. In total, 6336 genomic sequences from 13 countries were subjected to SNPs, haplotypes, and structure-based analyses. The SNP analysis revealed that the key SDX resistance marker, A437G, was nearing fixation in all countries, peaking in Malawi. The mutation A613S was rare except in isolates from the Democratic Republic of Congo and Malawi. Molecular docking revealed a general loss of interactions when comparing mutant proteins to the wild-type protein. During MD simulations, SDX was released from the active site in mutants A581G and A613S before the end of run-time, whereas an unstable binding of SDX to mutant A613S and haplotype A437A/A581G/A613S was observed. Conformational changes in mutant A581G and the haplotypes A581G/A613S, A437G/A581G, and A437G/A581G/A613S were seen. The radius of gyration revealed an unfolding behavior for the A613S, K540E/A581G, and A437G/A581G systems. Overall, tracking such mutations by the continuous analysis of Pfdhps SNPs is encouraged. SNPs on the Pfdhps structure may cause protein-drug function loss, which could affect the applicability of SDX in preventing malaria in pregnant women and children.


Asunto(s)
Antimaláricos , Dihidropteroato Sintasa , Malaria Falciparum , Plasmodium falciparum , Niño , Femenino , Humanos , Embarazo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Simulación del Acoplamiento Molecular , Mutación , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
11.
Korean J Parasitol ; 60(2): 109-116, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35500892

RESUMEN

Drug resistance is an important problem hindering malaria elimination in tropical areas. Point mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes confer resistance to antifolate drug, sulfadoxine-pyrimethamine (SP) while P. falciparum chloroquine-resistant transporter (Pfcrt) genes caused resistance to chloroquine (CQ). Decline in Pfdhfr/Pfdhps and Pfcrt mutations after withdrawal of SP and CQ has been reported. The aim of present study was to investigate the prevalence of Pfdhfr, Pfdhps, and Pfcrt mutation from 2 endemic areas of Thailand. All of 200 blood samples collected from western area (Thai-Myanmar) and southern area (Thai-Malaysian) contained multiple mutations in Pfdhfr and Pfdhps genes. The most prevalent haplotypes for Pfdhfr and Pfdhps were quadruple and double mutations, respectively. The quadruple and triple mutations of Pfdhfr and Pfdhps were common in western samples, whereas low frequency of triple and double mutations was found in southern samples, respectively. The Pfcrt 76T mutation was present in all samples examined. Malaria isolated from 2 different endemic regions of Thailand had high mutation rates in the Pfdhfr, Pfdhps, and Pfcrt genes. These findings highlighted the fixation of mutant alleles causing resistance of SP and CQ in this area. It is necessary to monitor the re-emergence of SP and CQ sensitive parasites in this area.


Asunto(s)
Antimaláricos , Cloroquina , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Combinación de Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tailandia
12.
Trop Med Int Health ; 26(10): 1314-1323, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34407273

RESUMEN

OBJECTIVE: The main objective of the MACOMBA (Maternity and Control of Malaria-HIV co-infection in Bangui) trial was to show that cotrimoxazole (CTX) is more effective than sulphadoxine-pyremethamine-IPTp (IPTp-SP) to prevent placental malaria infection (primary end point) among HIV-positive pregnant women with a CD4+ count ≥350 cells/mm3 in Bangui, CAR. METHODS: MACOMBA is a multicentre, open-label randomised trial conducted in four maternity hospitals in Bangui. Between 2013 and 2017, 193 women were randomised and 112 (59 and 53 in CTX and IPTp-SP arms, respectively) were assessed for placental infection defined by microscopic parasitaemia or PCR. RESULTS: Thirteen women had a placental infection: five in the CTX arm (one by microscopic placental parasitaemia and four by PCR) and eight by PCR in the SP-IPTp (8.5% vs. 15.1%, p = 0.28). The percentage of newborns with low birthweight (<2500 g) did not differ statistically between the two arms. Self-reported compliance to CTX prophylaxis was good. There was a low overall rate of adverse events in both arms. CONCLUSION: Although our results do not allow us to conclude that CTX is more effective, drug safety and good compliance among women with this treatment favour its widespread use among HIV-infected pregnant women, as currently recommended by WHO.


Asunto(s)
Infecciones por VIH/complicaciones , Malaria/prevención & control , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Pirimetamina/farmacología , Sulfadoxina/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Adulto , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , República Centroafricana/epidemiología , Combinación de Medicamentos , Femenino , Infecciones por VIH/epidemiología , Humanos , Malaria/epidemiología , Embarazo , Adulto Joven
13.
Malar J ; 20(1): 72, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546703

RESUMEN

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Asunto(s)
Antimaláricos/farmacología , Dihidropteroato Sintasa/genética , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacología , Alelos , Benin/epidemiología , Preescolar , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/enzimología , Prevalencia , Pirimetamina/farmacología
14.
Malar J ; 20(1): 152, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731134

RESUMEN

BACKGROUND: Anti-malarial drug resistance remains a key concern for the global fight against malaria. In Ghana sulfadoxine-pyrimethamine (SP) is used for intermittent preventive treatment of malaria in pregnancy and combined with amodiaquine for Seasonal Malaria Chemoprevention (SMC) during the high malaria season. Thus, surveillance of molecular markers of SP resistance is important to guide decision-making for these interventions in Ghana. METHODS: A total of 4469 samples from uncomplicated malaria patients collected from 2009 to 2018 was submitted to the Wellcome Trust Sanger Institute, UK for DNA sequencing using MiSeq. Genotypes were successfully translated into haplotypes in 2694 and 846 mono infections respectively for pfdhfr and pfdhps genes and the combined pfhdfr/pfdhps genes across all years. RESULTS: At the pfdhfr locus, a consistently high (> 60%) prevalence of parasites carrying triple mutants (IRNI) were detected from 2009 to 2018. Two double mutant haplotypes (NRNI and ICNI) were found, with haplotype NRNI having a much higher prevalence (average 13.8%) than ICNI (average 3.2%) across all years. Six pfdhps haplotypes were detected. Of these, prevalence of five fluctuated in a downward trend over time from 2009 to 2018, except a pfdhps double mutant (AGKAA), which increased consistently from 2.5% in 2009 to 78.2% in 2018. Across both genes, pfdhfr/pfdhps combined triple (NRNI + AAKAA) mutants were only detected in 2009, 2014, 2015 and 2018, prevalence of which fluctuated between 3.5 and 5.5%. The combined quadruple (IRNI + AAKAA) genotype increased in prevalence from 19.3% in 2009 to 87.5% in 2011 before fluctuating downwards to 19.6% in 2018 with an average prevalence of 37.4% within the nine years. Prevalence of parasites carrying the quintuple (IRNI + AGKAA or SGEAA) mutant haplotypes, which are highly refractory to SP increased over time from 14.0% in 2009 to 89.0% in 2016 before decreasing to 78.9 and 76.6% in 2017 and 2018 respectively. Though quintuple mutants are rising in prevalence in both malaria seasons, together these combined genotypes vary significantly within season but not between seasons. CONCLUSIONS: Despite high prevalence of pfdhfr triple mutants and combined pfdhfr/pfdhps quadruple and quintuple mutants in this setting SP may still be efficacious. These findings are significant as they highlight the need to continuously monitor SP resistance, particularly using deep targeted sequencing to ascertain changing resistance patterns.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Variación Genética , Genotipo , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Niño , Preescolar , Combinación de Medicamentos , Femenino , Variación Genética/efectos de los fármacos , Ghana , Humanos , Masculino , Plasmodium falciparum/efectos de los fármacos , Estaciones del Año , Adulto Joven
15.
J Trop Pediatr ; 67(1)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33404643

RESUMEN

Malaria in pregnancy is a huge public health problem as it is the cause of maternal anaemia, still birth, premature delivery, low birth weight among others. To tackle this problem, WHO recommended the administration, during pregnancy, of intermittent preventive treatment with sulphadoxine-pyrimethamine (IPTp-SP). The introduction of this policy is likely to create SP drug pressure which may lead to the emergence of parasite strains resistant to the drug. This study investigated the prevalence of the molecular markers of SP resistance as pointers to potential failure of IPTp-SP among pregnant women attending antenatal clinic, women at the point of baby delivery and out patients department (OPD) attendees. The study was conducted in health facilities located in parts of Ghana. Prevalence of mutations in dhfr and dhps genes of Plasmodium falciparum was determined using the method described by Duraisingh et al. The outcome of the study indicated the presence of high prevalence of strains of P.falciparum with the resistant alleles of the dhfr or dhps genes in the three categories of participants. There was a high prevalence of triple mutations (IRN) in the dhfr gene of P.falciparum isolates: 71.4% in peripheral blood of antenatal attendees; 74.1% in placenta cord blood of delivering mothers and 71.1% in OPD attendees. Quintuple mutations were only found in 2 (0.5%) isolates from OPD attendees. This observation might have occurred due to the increased use of SP for IPTp among others. There is the need for an interventional measure in order to protect pregnant women and their unborn children.Lay summaryWhen pregnant women get infected with the malaria parasites they are exposed to all manner of dangers including pre-term delivery, still birth, maternal anaemia and low birth weight. Taking sulphadoxine-pyrimethamine (SP) at predetermined periods during pregnancy, referred to as 'intermittent preventive treatment with SP' (IPTp-SP)' helps to curtail these problems. However, the frequent taking of these drugs is likely to create SP drug pressure which may lead to the emergence of parasite strains that are not readily killed by the drugs. In order to ascertain this phenomenon and advice stakeholders, this study determined the prevalence of certain 'materials' certified as markers of parasite resistance to SP. Alarmingly, more than 5% of all the category of women recruited to participate in this study were found to harbour the parasites that causes malaria. The outcome, also suggest the existence of high levels of strains of the malaria parasite, carrying the materials that make them to become resistant to SP. Policy makers must pay attention to these observations and institute measures to avoid escalation of the situation.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos/genética , Malaria Falciparum , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Femenino , Ghana/epidemiología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Embarazo , Prevalencia , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico
16.
Emerg Infect Dis ; 26(5): 902-909, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32310062

RESUMEN

Haiti is striving for zero local malaria transmission by the year 2025. Chloroquine remains the first-line treatment, and sulfadoxine/pyrimethamine (SP) has been used for mass drug-administration pilot programs. In March 2016, nationwide molecular surveillance was initiated to assess molecular resistance signatures for chloroquine and SP. For 778 samples collected through December 2017, we used Sanger sequencing to investigate putative resistance markers to chloroquine (Pfcrt codons 72, 74, 75, and 76), sulfadoxine (Pfdhps codons 436, 437, 540, 581, 613), and pyrimethamine (Pfdhfr codons 50, 51, 59, 108, 164). No parasites harbored Pfcrt point mutations. Prevalence of the Pfdhfr S108N single mutation was 47%, and we found the triple mutant Pfdhfr haplotype (108N, 51I, and 59R) in a single isolate. We observed no Pfdhps variants except in 1 isolate (A437G mutation). These data confirm the lack of highly resistant chloroquine and SP alleles in Haiti and support the continued use of chloroquine and SP.


Asunto(s)
Antimaláricos , Malaria Falciparum , Alelos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Haití/epidemiología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Mutación , Plasmodium falciparum/genética , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico
17.
Artículo en Inglés | MEDLINE | ID: mdl-32179528

RESUMEN

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Preparaciones Farmacéuticas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Femenino , Ghana , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Embarazo , Mujeres Embarazadas , Proteínas Protozoarias/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
18.
BMC Med ; 18(1): 207, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32772921

RESUMEN

BACKGROUND: Intermittent preventive treatment of malaria during pregnancy (IPTp) with dihydroartemisinin-piperaquine (DP) significantly reduces the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (SP), the current standard of care, but its impact on the incidence of malaria during infancy is unknown. METHODS: We conducted a double-blind randomized trial to compare the incidence of malaria during infancy among infants born to HIV-uninfected pregnant women who were randomized to monthly IPTp with either DP or SP. Infants were followed for all their medical care in a dedicated study clinic, and routine assessments were conducted every 4 weeks. At all visits, infants with fever and a positive thick blood smear were diagnosed and treated for malaria. The primary outcome was malaria incidence during the first 12 months of life. All analyses were done by modified intention to treat. RESULTS: Of the 782 women enrolled, 687 were followed through delivery from December 9, 2016, to December 5, 2017, resulting in 678 live births: 339 born to mothers randomized to SP and 339 born to those randomized to DP. Of these, 581 infants (85.7%) were followed up to 12 months of age. Overall, the incidence of malaria was lower among infants born to mothers randomized to DP compared to SP, but the difference was not statistically significant (1.71 vs 1.98 episodes per person-year, incidence rate ratio (IRR) 0.87, 95% confidence interval (CI) 0.73-1.03, p = 0.11). Stratifying by infant sex, IPTp with DP was associated with a lower incidence of malaria among male infants (IRR 0.75, 95% CI 0.58-0.98, p = 0.03) but not female infants (IRR 0.99, 95% CI 0.79-1.24, p = 0.93). CONCLUSION: Despite the superiority of DP for IPTp, there was no evidence of a difference in malaria incidence during infancy in infants born to mothers who received DP compared to those born to mothers who received SP. Only male infants appeared to benefit from IPTp-DP suggesting that IPTp-DP may provide additional benefits beyond birth. Further research is needed to further explore the benefits of DP versus SP for IPTp on the health outcomes of infants. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02793622 . Registered on June 8, 2016.


Asunto(s)
Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/prevención & control , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Complicaciones Parasitarias del Embarazo/prevención & control , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Adulto , Antimaláricos/farmacología , Artesunato/farmacología , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malaria/epidemiología , Masculino , Embarazo , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adulto Joven
19.
Malar J ; 19(1): 251, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664924

RESUMEN

BACKGROUND: Plasmodium vivax is the predominant Plasmodium species in Afghanistan. National guidelines recommend the combination of chloroquine and primaquine (CQ-PQ) for radical treatment of P. vivax malaria. Artesunate in combination with the antifolates sulfadoxine-pyrimethamine (SP) has been first-line treatment for uncomplicated falciparum malaria until 2016. Although SP has been the recommended treatment for falciparum and not vivax malaria, exposure of the P. vivax parasite population to SP might still have been quite extensive because of community based management of malaria. The change in the P. vivax antifolate resistance markers between 2007 and 2017 were investigated. METHODS: Dried blood spots were collected (n = 185) from confirmed P. vivax patients in five malaria-endemic areas of Afghanistan bordering Tajikistan, Turkmenistan and Pakistan, including Takhar, Faryab, Laghman, Nangarhar, and Kunar, in 2007, 2010 and 2017. Semi-nested PCR, RFLP and nucleotide sequencing were used to assess the pyrimethamine resistant related mutations in P. vivax dihydrofolate reductase (pvdhfr I13L, P33L, N50I, F57L, S58R, T61I, S93H, S117N, I173L) and the sulfonamide resistance related mutations in P. vivax dihydropteroate synthase (pvdhps A383G, A553G). RESULTS: In the 185 samples genotyped for pvdhfr and pvdhps mutations, 11 distinct haplotypes were observed, which evolved over time. In 2007, wild type pvdhfr and pvdhps were the most frequent haplotype in all study sites (81%, 80/99). However, in 2017, the frequency of the wild-type was reduced to 36%, (21/58; p value ≤ 0.001), with an increase in frequency of the double mutant pvdhfr and pvdhps haplotype S58RS117N (21%, 12/58), and the single pvdhfr mutant haplotype S117N (14%, 8/58). Triple and quadruple mutations were not found. In addition, pvdhfr mutations at position N50I (7%, 13/185) and the novel mutation S93H (6%, 11/185) were observed. Based on in silico protein modelling and molecular docking, the pvdhfr N50I mutation is expected to affect only moderately pyrimethamine binding, whereas the S93H mutation does not. CONCLUSIONS: In the course of ten years, there has been a strong increase in the frequency pyrimethamine resistance related mutations in pvdhfr in the P. vivax population in Afghanistan, although triple and quadruple mutations conferring high grade resistance were not observed. This suggests relatively low drug pressure from SP on the P. vivax parasite population in the study areas. The impact of two newly identified mutations in the pvdhfr gene on pyrimethamine resistance needs further investigation.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Afganistán , Combinación de Medicamentos , Marcadores Genéticos , Plasmodium vivax/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/genética
20.
Malar J ; 19(1): 290, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795288

RESUMEN

BACKGROUND: Artesunate plus sulfadoxine-pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015-2016 after 3-4 years of ASP use, are reported. METHODS: Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16-185, pfdhps 436-632 and K13 407-689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. RESULTS: Sulfadoxine-pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. CONCLUSION: The frequency of P. falciparum with reduced susceptibility to sulfadoxine-pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.


Asunto(s)
Antimaláricos/farmacología , Artesunato/farmacología , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Adulto , Anciano , Niño , Preescolar , Combinación de Medicamentos , Humanos , India , Lactante , Malaria Falciparum/prevención & control , Persona de Mediana Edad , Mutación , Plasmodium falciparum/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA