Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.168
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bioorg Chem ; 150: 107557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878754

RESUMEN

The limitations of commonly used sodium ascorbate-based catalyst system for copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction include excess production of reactive oxygen species and rapid catalyst deactivation. In this study instead of using a highly active reducing agent, such as, sodium ascorbate, we chose reducing sugar as a mild reducing agent to build up the catalyst system for CuAAC reaction. Interestingly, the bicinchoninic acid (BCA) assay system containing reducing sugar satisfies the essential elements of the catalyst system for CuAAC reaction. We found that CuSO4/BCA/Reducing sugar system can catalyze the CuAAC reaction but with low yield. Rational analyses of various parameters in CuSO4/BCA/Glucose catalyst system suggested storage at room temperature might enhance the catalytic activity, which was proven to be the case. Importantly, the system remains stable at room temperature and minimal H2O2 was detected. Notably, our study showed that the coordination between the slow reduction of Cu(I) by reducing sugar and the selective chelation of Cu(I) by BCA is key to developing this system. The CuSO4/BCA/Reducing sugar catalyst system was successfully applied to various CuAAC reaction based bioanalyses, and it is suitable for the CuAAC reaction based bioanalyses that are sensitive to ROS or request long reaction time.


Asunto(s)
Alquinos , Azidas , Sulfato de Cobre , Cobre , Reacción de Cicloadición , Catálisis , Cobre/química , Azidas/química , Alquinos/química , Sulfato de Cobre/química , Estructura Molecular , Especies Reactivas de Oxígeno/química , Quinolinas
2.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791149

RESUMEN

The crystallization of paramagnetic species in a magnetic field gradient under microgravity-like conditions is an area of interest for both fundamental and applied science. In this paper, a setup for the crystallization of paramagnetic species in the magnetic field up to 7 T generated by a superconducting magnet is described. The research includes calculations of the conditions necessary to compensate for the gravitational force for several types of paramagnetic substances using the magnetic field of superconducting magnets (4.7 T, 7 T, 9.4 T, and 16.4 T). Additionally, for the first time, the crystallization of copper sulfate and cobalt sulfate, as well as a mixture of copper sulfate and cobalt sulfate under gravitational force compensation in a superconducting magnet, was performed. This paper experimentally demonstrates the feasibility of growing paramagnetic crystals within the volume of a test tube on the example of copper and cobalt sulfate crystals. A comparison of crystals grown from the solution of a mixture of copper and cobalt sulfates under the same conditions, with and without the presence of a magnetic field, showed changes in both the number and size of crystals.


Asunto(s)
Cobalto , Cristalización , Campos Magnéticos , Cobalto/química , Ingravidez , Sulfato de Cobre/química , Cobre/química
3.
BMC Microbiol ; 23(1): 92, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37003969

RESUMEN

BACKGROUND: Swine production expanded in the last decades. Efforts have been made to improve meat production and to understand its relationship to pig gut microbiota. Copper (Cu) is a usual supplement to growth performance in animal production. Here, two performance studies were conducted to investigate the effects of three different sources of Cu on the microbiota of piglets. A total of 256 weaned piglets were randomly allocated into 4 treatments (10 replicates per treatment of 4 piglets per pen in Trial 1 and 8 replicates of 3 piglets per pen in Trial 2). Treatments included a control group (fed 10 mg/kg of Cu from CuSO4), a group fed at 160 mg/kg of Copper (II) sulfate (CuSO4) or tri-basic copper chloride (TBCC), and a group fed with Cu methionine hydroxy analogue chelated (Cu-MHAC) at 150, 80, and 50 mg/kg in Phases 1 (24-35 d), 2 (36-49 d), and 3 (50-70 d), respectively. At 70 d, the cecum luminal contents from one pig per pen were collected and polled for 16 S rRNA sequencing (V3/V4 regions). Parameters were analyzed in a completely randomized block design, in which each experiment was considered as a block. RESULTS: A total of 1337 Operational Taxonomic Units (OTUs) were identified. Dominance and Simpson ecological metrics were statistically different between control and treated groups (P < 0.10) showing that different Cu sources altered the gut microbiota composition with the proliferation of some bacteria that improve gut health. A high abundance of Prevotella was observed in all treatments while other genera were enriched and differentially modulated, according to the Cu source and dosage. The supplementation with Cu-MHAC can modify a group of bacteria involved in feed efficiency (FE) and short chain fatty acids (SCFA) production (Clostridium XIVa, Desulfovibrio, and Megasphera). These bacteria are also important players in the activation of ghrelin and growth hormones that were previously reported to correlate with Cu-MHAC supplementation. CONCLUSIONS: These results indicated that some genera seem to be directly affected by the Cu source offered to the animals. TBCC and Cu-MHAC (even in low doses) can promote healthy modifications in the gut bacterial composition, being a promising source of supplementation for piglets.


Asunto(s)
Cobre , Microbioma Gastrointestinal , Animales , Alimentación Animal/análisis , Ciego , Cobre/farmacología , Sulfato de Cobre/farmacología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Porcinos
4.
Fish Shellfish Immunol ; 136: 108740, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37061070

RESUMEN

Tocotrienols have strong antioxidant properties; however, tocotrienol has not been investigated in detail in aquatic products. In this study, the anti-inflammatory and antioxidant activities of the tocotrienol-rich fraction from rice bran oil and its potential mechanism were verified in a zebrafish CuSO4 inflammation model. The in vitro antioxidant activity was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) stable radical method. The copper chelating activity was determined using the pyrocatechol violet method. Intracellular reactive oxygen species in zebrafish were detected using a fluorescent ROS probe. Transgenic Tg (lyz: DsRed2) zebrafish were used for neutrophil transmigration assays. The mRNA expression levels of antioxidant and pro-inflammatory factor genes were measured using quantitative real-time reverse transcription PCR. In the concentration range tested, 100 µg/mL TRF had the highest copper chelating activity (10%). TRF showed DPPH-free radical scavenging ability, which was 53% at 100 µg/mL TRF. TRF effectively repressed ROS generation and inhibited neutrophil migration to the inflamed site. Moreover, TRF upregulated the expression of antioxidant genes sod and gpx4b, inhibited the expression of pro-inflammatory factors tnfa and il8, and suppressed CuSO4-induced inflammation. In conclusion, TRF has significant anti-inflammatory and antioxidant properties, which supports the use of TRF as an aquatic feed additive to improve the anti-inflammatory and antioxidant capacity of aquatic products.


Asunto(s)
Antioxidantes , Tocotrienoles , Animales , Antioxidantes/farmacología , Aceite de Salvado de Arroz , Pez Cebra , Tocotrienoles/farmacología , Sulfato de Cobre , Especies Reactivas de Oxígeno , Cobre , Antiinflamatorios/farmacología , Inflamación/inducido químicamente
5.
Transfus Apher Sci ; 62(6): 103811, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37730446

RESUMEN

CuSO4 (Copper sulphate) poisoning though rare, is associated with high mortality. It involves multiple organ systems and if not dealt with promptly can lead to death. Supportive care and chelation therapy along with TPE (therapeutic plasma exchange), whole blood exchange or red cell exchange can be employed in management. We report such a case where swift clinical improvement was seen after TPE.


Asunto(s)
Sulfato de Cobre , Intercambio Plasmático , Humanos , Sulfatos , Plasmaféresis
6.
J Nanobiotechnology ; 21(1): 258, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550685

RESUMEN

The development of osteoarthritis (OA) correlates with the expansion of senescent cells in cartilage, which contributes to an inflammatory microenvironment that accelerates matrix degradation and hampers cartilage generation. To address OA, we synthesized small copper sulfide nanoparticles functionalized with anti-beta-2-microglobulin antibodies (B2M-CuS NPs) that catalyze the formation of toxic •OH from H2O2 via peroxidase-like activity. These B2M-CuS NPs are specifically targeted to induce apoptosis in senescent chondrocytes while showing no toxicity toward normal chondrocytes. Furthermore, B2M-CuS NPs enhance the chondrogenesis of normal chondrocytes. Thus, B2M-CuS NPs can effectively treat OA by clearing senescent chondrocytes and promoting cartilage regeneration after intra-articular injection into the knee joints of surgery-induced OA mice. This study uses smart nanomaterials to treat OA with a synergistic strategy that both remodels senescent cartilage and creates a pro-chondrogenic microenvironment.


Asunto(s)
Nanopartículas , Osteoartritis , Ratones , Animales , Sulfato de Cobre , Condrogénesis , Peróxido de Hidrógeno , Cartílago/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
7.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36794883

RESUMEN

Beyond their biological roles, metals have a strong impact on the environment. It has been reported that metals are also inhibitory of Quorum Sensing (QS) mechanisms, ones of the best characterized signaling systems in bacteria and fungi. We analyzed the effect of CuSO4, CdCl2, and K2Cr2O7, on QS systems sharing or differing in the bacterial host or the QS signal. The results in this study show that CuSO4 can not only be inhibitory, but also stimulatory of QS activity: at 0.2 mM increased six fold the activity in Chromobacterium subtsugae CV026. This behavior is related to the concentration of the metal and the particular QS system: E. coli MT102 (pJBA132) was no affected, but CuSO4 decreased the QS activity of Pseudomonas putida F117 (pKR-C12) to half its control values. K2Cr2O7 increased four and three folds the QS activities of E. coli MT102 (pJBA132) and P. putida F117 (pAS-C8), respectively, but without effect when combined with CuSO4 or CdCl2. CdCl2 only showed a positive effect in CV026 when combined with CuSO4. Results suggest that factors related with the culture conditions impact on the influence of the metals, and reinforce the importance of the environment in the modulation of QS activity.


Asunto(s)
Técnicas Biosensibles , Percepción de Quorum , Cloruro de Cadmio/farmacología , Dicromato de Potasio/farmacología , Sulfato de Cobre/farmacología , Escherichia coli , Bacterias , Chromobacterium , Antibacterianos/farmacología , Pseudomonas aeruginosa
8.
J Fish Dis ; 46(4): 347-356, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651652

RESUMEN

Cryptocaryon irritans is one of the most harmful marine parasites in mariculture. Copper sulphate is often used to kill parasites and the influence of copper sulphate on the tomont stage of C. irritans was explored in this study. The results showed that excystment rate was not significantly affected when tomonts were exposed to 5 mg/L (76.7%) and 10 mg/L (78.9%) of copper sulphate for 3 h. However, excystment rate was significantly inhibited when exposed to 15 mg/L (33.3%) for 3 h and 5 mg/L (28.9%), 10 mg/L (33.3%) and 15 mg/L (33.3%) for 6 h. After treatment with high concentrations of copper sulphate, the interior of the tomonts was fuzzy under the microscope, and the division process could not be observed. Metabolomic results combined with preliminary transcriptome analysis results showed that the tomonts were induced to produce linoleate, riboflavin, inositol and other substances under the stress of Cu2+ , which affected the antioxidant mechanism of the body. Using MDA content determination and antioxidant enzyme activity analysis, copper sulphate was found to cause oxidative damage to tomonts by affecting the generation of metabolites, leading to the death of tomonts.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Hymenostomatida , Perciformes , Animales , Infecciones por Cilióforos/parasitología , Sulfato de Cobre/farmacología , Antioxidantes , Enfermedades de los Peces/parasitología , Metaboloma , Perciformes/parasitología
9.
Ecotoxicol Environ Saf ; 253: 114613, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796205

RESUMEN

The mechanisms of toxicity of engineered nanomaterials (ENMs) to the early life stages of freshwater fish, and the relative hazard compared to dissolved metals, is only partially understood. In the present study, zebrafish embryos were exposed to lethal concentrations of copper sulphate (CuSO4) or copper oxide (CuO) ENMs (primary size ∼15 nm), and then the sub-lethal effects investigated at the LC10 concentrations over 96 h. The 96 h-LC50 (mean ± 95% CI) for CuSO4 was 303 ± 14 µg Cu L-1 compared to 53 ± 9.9 mg L-1 of the whole material for CuO ENMs; with the ENMs being orders of magnitude less toxic than the metal salt. The EC50 for hatching success was 76 ± 11 µg Cu L-1 and 0.34 ± 0.78 mg L-1 for CuSO4 and CuO ENMs respectively. Failure to hatch was associated with bubbles and foam-looking perivitelline fluid (CuSO4), or particulate material smothering the chorion (CuO ENMs). In the sub-lethal exposures, about 42% of the total Cu as CuSO4 was internalised, as measured by Cu accumulation in the de-chorionated embryos, but for the ENMs exposures, nearly all (94%) of the total Cu was associated with chorion; indicating the chorion as an effective barrier to protect the embryo from the ENMs in the short term. Both forms of Cu exposure caused sodium (Na+) and calcium (Ca2+), but not magnesium (Mg2+), depletion from the embryos; and CuSO4 caused some inhibition of the sodium pump (Na+/K+-ATPase) activity. Both forms of Cu exposure caused some loss of total glutathione (tGSH) in the embryos, but without induction of superoxide dismutase (SOD) activity. In conclusion, CuSO4 was much more toxic than CuO ENMs to early life stage zebrafish, but there are subtle differences in the exposure and toxic mechanisms for each substance.


Asunto(s)
Nanoestructuras , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Cobre/análisis , Sulfato de Cobre/toxicidad , Pez Cebra , Nanoestructuras/toxicidad , Óxidos , Contaminantes Químicos del Agua/toxicidad
10.
Ecotoxicol Environ Saf ; 249: 114480, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321692

RESUMEN

Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1ß, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and - 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.


Asunto(s)
Curcumina , FN-kappa B , FN-kappa B/metabolismo , Curcumina/farmacología , Sulfato de Cobre , Cobre/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Estrés Oxidativo , Riñón , Apoptosis
11.
Plant Dis ; 107(10): 2978-2985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36856653

RESUMEN

Bacterial spot caused by Xanthomonas spp. is a significant disease that challenges pepper growers worldwide and is particularly severe in a hot and humid environment. Understanding the pathogen's population biology is critical for sustainable disease management. The goal of this study was to characterize the species, race, and bactericide sensitivity of bacterial spot-associated Xanthomonas collected from pepper in Florida. A survey of pepper production fields in southwest Florida between 2019 and 2021-covering two counties, eight farms, and two transplant facilities-resulted in the isolation of 542 Xanthomonas euvesicatoria and 35 Xanthomonas perforans strains. Four races were identified on pepper, of which most strains were race P1 (42%), race P6 (26%), race P3 (24%), and less common was race P4 (8%). All X. perforans strains were characterized as race P1 and showed a compatible reaction on tomato. Sixty-two and 96% of strains were sensitive to copper sulfate and streptomycin, respectively. One farm that did not use copper to manage the disease contained only copper-sensitive strains and was the only farm with race P3 strains. Strains were assayed for starch hydrolysis activity of which a third of X. euvesicatoria strains were strongly amylolytic, a characteristic not typically observed in X. euvesicatoria. All X. perforans strains produced bacteriocins against X. euvesicatoria in vitro. The Xanthomonas population causing bacterial spot on pepper in southwest Florida is diverse and dynamic; thus, regular monitoring provides pertinent information to plant breeders and growers for designing disease management strategies.


Asunto(s)
Piper nigrum , Xanthomonas , Florida , Cobre , Enfermedades de las Plantas/microbiología , Sulfato de Cobre , Xanthomonas/genética
12.
J Basic Microbiol ; 63(12): 1361-1372, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37712102

RESUMEN

Heavy metal pollution has posed a severe danger to environmental stability due to its high toxicity and lack of biodegradability. The present study deals with the appraisement of tolerance shown by various bacteria in varied copper and iron concentrations. Among the 20 isolates, four isolates, GN2, SC5, SC8, and SC10, exhibiting more significant iron and copper tolerance, were selected and identified by 16 S ribosomal ribonucleic acid (rRNA) gene sequence analysis as Pantoea agglomerans strain GN2, Pantoea sp. strain SC5, Bacillus sp. strain SC8 and Priestia aryabhattaistrain SC10. The minimum inhibitory concentration of molecularly identified strains revealed that P. agglomerans strain GN2 showed tolerance to iron sulfate and copper sulfate upto 600 and 400 µg/mL, whereas Bacillus sp. SC8 (OQ202165) showed tolerance of 700 and 250 µg/mL were tolerant to iron sulfate and copper sulfate up to 700 and 150 µg/mL, respectively. Pantoea sp. strain SC5 showed significant tolerance to both heavy metals. The isolates were further studied for their ability to grow at varying temperatures and pH ranges. Most of the isolates showed optimal growth at 37°C and pH 7. However, Pantoea sp. SC5 was competent to have prominent growth at 45°C and pH 8.0. Microbial remediation, which is eco-friendly, has proven the most effective method for bioremediation of heavy metal-contaminated environments. Using heavy metal-resistant bacteria for microbial remediation of iron and copper-contaminated environments could be a viable and valuable strategy. These isolates could also be used to decontaminate heavy metal-polluted agricultural soils.


Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Cobre/farmacología , Sulfato de Cobre , Metales Pesados/toxicidad , Bacterias , Hierro/farmacología , Biodegradación Ambiental , Contaminantes del Suelo/toxicidad
13.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446380

RESUMEN

In aquaculture, copper sulphate and trichlorfon are commonly used as disinfectants and insecticide, sometimes in combination. However, improper use can result in biotoxicity and increased ecological risks. The liver plays a crucial role in detoxification, lipid metabolism, nutrient storage, and immune function in fish. Selecting the liver as the main target organ for research helps to gain an in-depth understanding of various aspects of fish physiology, health, and adaptability. In the present study, zebrafish were exposed to Cu (0.5 mg/L) and Tri (0.5 mg/L) alone and in combination for 21 days. The results demonstrate that both Cu and Tri caused hepatocyte structure damage in zebrafish after 21 days of exposure, with the combination showing an even greater toxicity. Additionally, the antioxidant and immune enzyme activities in zebrafish liver were significantly induced on both day 7 and day 21. A transcriptome analysis revealed that Cu and Tri, alone and in combination, impacted various physiological activities differently, including metabolism, growth, and immunity. Overall, Cu and Tri, either individually or in combination, can induce tissue damage by generating oxidative stress in the body, and the longer the exposure duration, the stronger the toxic effects. Moreover, the combined exposure to Cu and Tri exhibits enhanced toxicity. This study provides a theoretical foundation for the combined use of heavy metal disinfectants and other drugs.


Asunto(s)
Sulfato de Cobre , Contaminantes Químicos del Agua , Animales , Sulfato de Cobre/toxicidad , Pez Cebra/metabolismo , Triclorfón/metabolismo , Triclorfón/farmacología , Cobre/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/metabolismo
14.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894810

RESUMEN

Metabolic changes under stress are often studied in short-term experiments, revealing rapid responses in gene expression, enzyme activity, and the amount of antioxidants. In a long-term experiment, it is possible to identify adaptive changes in both primary and secondary metabolism. In this study, we characterized the physiological state of tobacco plants and assessed the amount and spectrum of phenolic compounds and the lignification of axial organs under excess copper stress in a long-term experiment (40 days). Plants were treated with 100 and 300 µM CuSO4, as well as a control (Knop solution). Copper accumulation, the size and anatomical structure of organs, stress markers, and the activity of antioxidant enzymes were studied. Lignin content was determined with the cysteine-assisted sulfuric method (CASA), and the metabolite profile and phenolic spectrum were determined with UHPLC-MS and thin-layer chromatography (TLC). Cu2+ mainly accumulated in the roots and, to a lesser extent, in the shoots. Copper sulfate (100 µM) slightly stimulated stem and leaf growth. A higher concentration (300 µM) caused oxidative stress; H2O2 content, superoxide dismutase (SOD), and guaiacol peroxidase (GPOX) activity increased in roots, and malondialdehyde (MDA) increased in all organs. The deposition of lignin increased in the roots and stems compared with the control. The content of free phenolics, which could be used as substrates for lignification, declined. The proportions of ferulic, cinnamic, and p-coumaric acids in the hydrolysate of bound phenolics were higher, and they tended toward additional lignification. The metabolic profile changed in both roots and stems at both concentrations, and changed in leaves only at a concentration of 300 µM. Thus, changes in the phenolic spectrum and the enhanced lignification of cell walls in the metaxylem of axial (root and stem) organs in tobacco can be considered important metabolic responses to stress caused by excess CuSO4.


Asunto(s)
Sulfato de Cobre , Cobre , Sulfato de Cobre/farmacología , Cobre/farmacología , Cobre/metabolismo , Nicotiana/metabolismo , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Raíces de Plantas/metabolismo
15.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239865

RESUMEN

Long-term or excessive oxidative stress can cause serious damage to fish. Squalene can be added to feed as an antioxidant to improve the body constitution of fish. In this study, the antioxidant activity was detected by 2,2-diphenyl-1-acrylhydrazyl (DPPH) test and fluorescent probe (dichloro-dihydro-fluorescein diacetate). Transgenic Tg (lyz: DsRed2) zebrafish were used to evaluate the effect of squalene on CuSO4-induced inflammatory response. Quantitative real-time reverse transcription polymerase chain reaction was used to examine the expression of immune-related genes. The DPPH assay demonstrated that the highest free radical scavenging exerted by squalene was 32%. The fluorescence intensity of reactive oxygen species (ROS) decreased significantly after 0.7% or 1% squalene treatment, and squalene could exert an antioxidative effect in vivo. The number of migratory neutrophils in vivo was significantly reduced after treatment with different doses of squalene. Moreover, compared with CuSO4 treatment alone, treatment with 1% squalene upregulated the expression of sod by 2.5-foldand gpx4b by 1.3-fold to protect zebrafish larvae against CuSO4-induced oxidative damage. Moreover, treatment with 1% squalene significantly downregulated the expression of tnfa and cox2. This study showed that squalene has potential as an aquafeed additive to provide both anti-inflammatory and antioxidative properties.


Asunto(s)
Antioxidantes , Pez Cebra , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pez Cebra/genética , Sulfato de Cobre/farmacología , Escualeno/farmacología , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
16.
Environ Geochem Health ; 45(5): 2415-2434, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35986856

RESUMEN

Spatial distribution linked to geostatistical techniques contributes to sum up information into an easier-to-comprehend knowledge. This study compares copper spatial distribution in surface sediments and subsequent categorization according to its toxicological potential in two reservoirs, Rio Grande (RG) and Itupararanga (ITU) (São Paulo-Brazil), where copper sulfate is applied and not applied, respectively. Sediments from 47 sites in RG and 52 sites in ITU were collected, and then, copper concentrations were interpolated using geostatistical techniques (kriging). The resulting sediment distributions were classified in categories based on sediment quality guides: threshold effect level and probable effect level; regional reference values (RRVs) and enrichment factor (EF). Copper presented a heterogenic distribution and higher concentrations in RG (2283.00 ± 1308.75 mg/kg) especially on the upstream downstream, associated with algicide application as well as the sediment grain size, contrary to ITU (21.81 ± 8.28 mg/kg) where a no-clear pattern of distribution was observed. Sediments in RG are predominantly categorized as "Very Bad", whereas sediments in ITU are mainly categorized as "Good", showing values higher than RRV. The classification is supported by the EF categorization, which in RG is primarily categorized as "Very High" contrasting to ITU classified as "Absent/Very Low". Copper total stock in superficial sediment estimated for RG is 4515.35 Ton of Cu and for ITU is 27.45 Ton of Cu.


Asunto(s)
Sulfato de Cobre , Contaminantes Químicos del Agua , Sulfato de Cobre/toxicidad , Cobre/toxicidad , Cobre/análisis , Ecotoxicología , Sedimentos Geológicos , Brasil , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
17.
J Biol Inorg Chem ; 27(7): 665-677, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171446

RESUMEN

Iron [Fe(II)] and copper [Cu(II)] overloads in rat brain are associated with oxidative stress and damage. The purpose of this research is to study whether brain antioxidant enzymes are involved in the control of intracellular redox homeostasis in the brain of rats male Sprague-Dawley rats (80-90 g) that received drinking water supplemented with either 1.0 g/L of ferrous chloride (n = 24) or 0.5 g/L cupric sulfate (n = 24) for 42 days. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione transferase (GT) activities in brain were determined by spectrophotometric methods and NO production by the content of nitrite concentration in the organ. Chronic treatment with Fe(II) and Cu(II) led to a significant decrease of nitrite content and SOD activity in brain. Activity of NADPH oxidase increased with Cu(II) treatment. Concerning Fe(II), catalase and GT activities increased in brain after 28 and 4 days of treatment, respectively. In the case of Cu(II), catalase activity decreased whereas GT activity increased after 2 and 14 days, respectively. The regulation of redox homeostasis in brain involves changes of the activity of these enzymes to control the steady state of oxidant species related to redox signaling pathways upon Cu and Fe overload. NO may serve to detoxify cells from superoxide anion and hydrogen peroxide with the concomitant formation of peroxynitrite. However, the latest is a powerful oxidant which leads to oxidative modifications of biomolecules. These results suggest a common pathway to oxidative stress and damage in brain for Cu(II) and Fe(II).


Asunto(s)
Antioxidantes , Agua Potable , Animales , Antioxidantes/química , Encéfalo/metabolismo , Catalasa/metabolismo , Cobre/metabolismo , Sulfato de Cobre , Compuestos Ferrosos/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Masculino , NADP/metabolismo , NADPH Oxidasas/metabolismo , Nitritos , Oxidantes/metabolismo , Ácido Peroxinitroso/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa , Superóxidos/metabolismo
18.
J Pept Sci ; 28(11): e3429, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35694817

RESUMEN

Peptide-bound methionine may transfer oxidative damage from the thioether side chain to the peptide backbone, catalyzing decomposition in general and α-amidation in particular. In the present study, we focused on the reactivity and reaction pathways of peptides. We synthesized model peptides comprising methionine or not and investigated their overall tendency towards decomposition and formation of specific products under conditions mimicking the cooking process at 100°C in buffered solution (pH 6.0) in the presence of redox-active substances such as transition metal ions and reductones. Peptides containing methionine were more susceptible to α-amidation under all oxidative conditions, and the products of N-terminus-directed α-amidation were quantified. Exemplarily, after incubation in the presence of cupric sulfate, about 2.0 mol-% of the overall decomposition of Z-glycylmethionylglycine accounted for the formation of Z-glycinamide, whereas it was below 0.1 mol-% for Z-glycylalanylglycine. Surprisingly and different from previous observations, C-terminus-directed α-amidation was observed for the first time. From Z-glycylmethionylglycine, the respective products were formed in higher amounts than the N-terminus-directed α-amidation product Z-glycinamide under all applied oxidation conditions. The preference of electron transfer from the amino nitrogen bound in the peptide bond directed to the C-terminus may be ascribed to a sterically less demanding hexagonal 3-electron-2-center intermediate during methionine-catalyzed α-amidation.


Asunto(s)
Sulfato de Cobre , Metionina , Metionina/química , Péptidos/química , Racemetionina , Sulfuros
19.
Pestic Biochem Physiol ; 184: 105098, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715037

RESUMEN

Control of cyanobacteria harmful algal blooms remains a global challenge. In the present study, a series of novel 2-cyclopropyl-4-aminopyrimidine hydrazones were designed and synthesized as potential algicides. Compounds 4a, 4b, 4h, 4j, 4k, 4l, and 4m showed potent inhibition against Synechocystis sp. PCC6803 (median effective concentration, EC50 = 1.1 to 1.7 µM) and Microcystis aeruginosa FACHB905 (EC50 = 1.2 to 2.0 µM), more potent than, or comparably with, copper sulfate (PCC6803, EC50 = 1.8 µM; FACHB905, EC50 = 2.2 µM) and prometryne (PCC6803, EC50 = 12.3 µM; FACHB905, EC50 = 7.2 µM). Compound 4k exhibited algicidal activity in an expanded culture system, and was less toxic than copper sulfate to zebrafish. Electron microscope analyses showed that 4k damaged cyanobacterial cells and decreased the number of thylakoid lamellae. Transcriptomic and qPCR analyses suggest that 4k interfered photosynthesis-related pathways. Treatment with 4k significantly decreased the maximum quantum yield of photosystem II and the photosynthetic electron transfer rate, and the resulting reactive oxygen species damaged thylakoid membranes and photosystem I. The results suggest that 4k is a potential lead for further development of effective and safe algicides.


Asunto(s)
Herbicidas , Hidrazonas , Animales , Sulfato de Cobre , Herbicidas/farmacología , Hidrazonas/farmacología , Pirimidinas , Pez Cebra
20.
Plant Dis ; 106(3): 960-965, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34705489

RESUMEN

Since the protective activity of the Bordeaux mixture against plant disease caused by oomycetes was discovered, copper compounds have been used for more than a century as an effective plant protection strategy. However, the application of excessive copper can cause adverse effects through long-term heavy metal accumulation in soils. Therefore, it is necessary to develop new strategies to reduce or replace copper in pesticides based on organic and low-input farming systems. Organic acids are eco-friendly. In this study, we tested the antifungal and anti-oomycete activity of maleic acid (MA) and copper sulfate (CS) against 13 plant pathogens. Treatment with a mixture of MA and CS showed strong anti-oomycetes activity against Phytophthora xcambivora, P. capsici, and P. cinnamomi. Moreover, the concentration of CS in the activated mixture of MA and CS was lower than that in the activated CS only, and the mixture showed synergy or partial synergy effects on the anti-oomycete activity. Application of a wettable powder formulation of MA and CS mixture (MCS 30WP; 26.67% MA and 3.33% CS) had excellent protective activity in pot experiments with control values of 73% Phytophthora blight on red pepper, 91% damping-off on cucumber, and 84% Pythium blight on creeping bentgrass, which are similar to those of the CS wettable powder formulation (6.67% CS) containing two times the CS content of MCS 30WP. These observations suggest that the synergistic effect of the MA and CS combination is a sustainable alternative for effective management of destructive oomycete diseases.


Asunto(s)
Sulfato de Cobre , Phytophthora , Sulfato de Cobre/farmacología , Maleatos/farmacología , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA