Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.567
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 620(7973): 299-302, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558847

RESUMEN

The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Ciclo Hidrológico , Agua , Arcilla/química , Medio Ambiente Extraterrestre/química , Minerales/análisis , Minerales/química , Sulfatos/análisis , Sulfatos/química , Humedad , Agua/análisis , Origen de la Vida , Exobiología
2.
Nature ; 618(7967): 974-980, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258677

RESUMEN

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Asunto(s)
Océanos y Mares , Fósforo , Agua de Mar , Atmósfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , Historia Antigua , Hipoxia/metabolismo , Oxígeno/análisis , Oxígeno/historia , Oxígeno/metabolismo , Fósforo/análisis , Fósforo/historia , Fósforo/metabolismo , Agua de Mar/química , Sulfatos/metabolismo , Carbonatos/análisis , Carbonatos/metabolismo , Oxidación-Reducción
3.
Proc Natl Acad Sci U S A ; 121(6): e2313650121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285932

RESUMEN

Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.


Asunto(s)
Hidrogenosulfito Reductasa , Sulfatos , Humanos , Sulfatos/metabolismo , Anaerobiosis , Hidrogenosulfito Reductasa/metabolismo , Óxidos de Azufre , Azufre/metabolismo , Sulfuros/metabolismo , Respiración , Oxidación-Reducción
4.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573964

RESUMEN

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Asunto(s)
Ecosistema , Ambiente , Transporte de Electrón , Sulfatos/química , Respiración de la Célula
5.
Proc Natl Acad Sci U S A ; 121(24): e2400711121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833476

RESUMEN

Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.


Asunto(s)
Lipidómica , Nitrógeno , Fósforo , Azufre , Fósforo/metabolismo , Azufre/metabolismo , Nitrógeno/metabolismo , Adaptación Fisiológica , Sulfatos/metabolismo , Bacterias Anaerobias/metabolismo , Anaerobiosis
6.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498718

RESUMEN

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Asunto(s)
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Biopelículas , Proteínas Portadoras/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
Nat Chem Biol ; 20(4): 410-421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38347214

RESUMEN

Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host-microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host-microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Mamíferos , Metaboloma , Sulfatos
8.
PLoS Biol ; 21(9): e3002292, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747940

RESUMEN

Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.


Asunto(s)
Archaea , Sulfatos , Anaerobiosis , Sulfatos/metabolismo , Sedimentos Geológicos/microbiología , Bacterias/genética , Oxidación-Reducción , Filogenia
9.
PLoS Biol ; 21(12): e3002439, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060626

RESUMEN

Assimilation of sulfur is vital to all organisms. In S. cerevisiae, inorganic sulfate is first reduced to sulfide, which is then affixed to an organic carbon backbone by the Met17 enzyme. The resulting homocysteine can then be converted to all other essential organosulfurs such as methionine, cysteine, and glutathione. This pathway has been known for nearly half a century, and met17 mutants have long been classified as organosulfur auxotrophs, which are unable to grow on sulfate as their sole sulfur source. Surprisingly, we found that met17Δ could grow on sulfate, albeit only at sufficiently high cell densities. We show that the accumulation of hydrogen sulfide gas underpins this density-dependent growth of met17Δ on sulfate and that the locus YLL058W (HSU1) enables met17Δ cells to assimilate hydrogen sulfide. Hsu1 protein is induced during sulfur starvation and under exposure to high sulfide concentrations in wild-type cells, and the gene has a pleiotropic role in sulfur assimilation. In a mathematical model, the low efficiency of sulfide assimilation in met17Δ can explain the observed density-dependent growth of met17Δ on sulfate. Thus, having uncovered and explained the paradoxical growth of a commonly used "auxotroph," our findings may impact the design of future studies in yeast genetics, metabolism, and volatile-mediated microbial interactions.


Asunto(s)
Cisteína Sintasa , Sulfuro de Hidrógeno , Proteínas de Saccharomyces cerevisiae , Sulfuro de Hidrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Cisteína Sintasa/genética , Cisteína Sintasa/metabolismo , Eliminación de Gen , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/metabolismo , Modelos Biológicos
10.
Mol Cell ; 69(6): 917-918, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547718

RESUMEN

In this issue of Molecular Cell, Lin et al. (2018) report that chondroitin-4-sulfate, which is found in a common supplement meant to alleviate degenerative joint disorders, promotes the growth of BRAF V600E mutant melanoma. This study not only has implications for patient care but also sheds light on a novel mechanism for regulating phosphoinositide 3-kinase signaling.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Sulfatos de Condroitina , Suplementos Dietéticos , Humanos , Melanoma , Sulfatos
11.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155857

RESUMEN

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Asunto(s)
Sulfatos , Azufre , Sulfatos/metabolismo , Oxidación-Reducción , Azufre/metabolismo , Sulfuros/metabolismo , Óxidos de Azufre
12.
Proc Natl Acad Sci U S A ; 120(46): e2307480120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943835

RESUMEN

Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.


Asunto(s)
Neovascularización Fisiológica , Sulfatos , Ratones , Animales , Neovascularización Fisiológica/fisiología , Sulfatos/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Miembro Posterior/irrigación sanguínea , Modelos Animales de Enfermedad
13.
PLoS Genet ; 19(3): e1010692, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36976798

RESUMEN

Copper tolerance and SO2 tolerance are two well-studied phenotypic traits of Saccharomyces cerevisiae. The genetic bases of these traits are the allelic expansion at the CUP1 locus and reciprocal translocation at the SSU1 locus, respectively. Previous work identified a negative association between SO2 and copper tolerance in S. cerevisiae wine yeasts. Here we probe the relationship between SO2 and copper tolerance and show that an increase in CUP1 copy number does not always impart copper tolerance in S. cerevisiae wine yeast. Bulk-segregant QTL analysis was used to identify variance at SSU1 as a causative factor in copper sensitivity, which was verified by reciprocal hemizygosity analysis in a strain carrying 20 copies of CUP1. Transcriptional and proteomic analysis demonstrated that SSU1 over-expression did not suppress CUP1 transcription or constrain protein production and provided evidence that SSU1 over-expression induced sulfur limitation during exposure to copper. Finally, an SSU1 over-expressing strain exhibited increased sensitivity to moderately elevated copper concentrations in sulfur-limited medium, demonstrating that SSU1 over-expression burdens the sulfate assimilation pathway. Over-expression of MET 3/14/16, genes upstream of H2S production in the sulfate assimilation pathway increased the production of SO2 and H2S but did not improve copper sensitivity in an SSU1 over-expressing background. We conclude that copper and SO2 tolerance are conditional traits in S. cerevisiae and provide evidence of the metabolic basis for their mutual exclusivity. These findings suggest an evolutionary driver for the extreme amplification of CUP1 observed in some yeasts.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cobre/metabolismo , Dióxido de Azufre/análisis , Dióxido de Azufre/metabolismo , Proteómica , Vino/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/análisis , Sulfatos/metabolismo , Metalotioneína/genética
14.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079551

RESUMEN

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Asunto(s)
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiología , Anaerobiosis , Dióxido de Silicio , Hibridación Fluorescente in Situ , Fósiles , Archaea/genética , Oxidación-Reducción , Sulfatos , Silicatos , Filogenia , Consorcios Microbianos
15.
Pharmacol Rev ; 75(3): 521-531, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549865

RESUMEN

The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid ß (Aß) plaques and tau fibrils while simultaneously stimulating Aß plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.


Asunto(s)
Enfermedad de Alzheimer , Ictiosis , Humanos , Esteroles , Péptidos beta-Amiloides , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Sulfatos
16.
J Biol Chem ; 300(1): 105552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072065

RESUMEN

Fibrinogen C domain-containing protein 1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl-binding site (S1) with galactose and glucose-derived ligands rotated 180° relative to each other. One subunit of a native structure derived from protein expressed in mammalian cells binds glycosylation from a neighboring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate, or sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n = 1, 2, 3, 5, 11, via ELISA along with microscale thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference from wildtype, but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin, suggesting that S1(2) may have functional importance in ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggest a versatility in FIBCD1 to recognize chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.


Asunto(s)
Receptores de Superficie Celular , Humanos , Acetatos , Sitios de Unión/fisiología , Carbohidratos/química , Quitina/metabolismo , Hemostáticos , Ligandos , Unión Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Sulfatos , Modelos Moleculares , Estructura Terciaria de Proteína
17.
Plant Cell ; 34(10): 3814-3829, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35792878

RESUMEN

Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root. The allocation of carbon to the roots is facilitated by the specific upregulation of the sucrose-transporter genes SWEET11/12 in shoots. SWEET11/12 activation is indispensable for enabling sucrose to act as a carbon source for growth and as a signal for tuning root apical meristem activity via glucose-TOR signaling. The sugar-stimulated TOR activity in the root suppresses autophagy and maintains root apical meristem activity to support root growth to enhance mining for new sulfate resources in the soil. We provide direct evidence that the organ-specific regulation of autophagy is essential for the increased root-to-shoot ratio in response to sulfur limitation. These findings uncover how sulfur limitation controls the central sensor kinase TOR to enable nutrient recycling for stress-induced morphological adaptation of the plant body.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Carbono , Regulación de la Expresión Génica de las Plantas/genética , Glucosa , Proteínas de Transporte de Membrana , Meristema/metabolismo , Nutrientes , Fosfatidilinositol 3-Quinasas , Raíces de Plantas/metabolismo , Sirolimus , Suelo , Sacarosa , Sulfatos , Azufre , Serina-Treonina Quinasas TOR/metabolismo
18.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986141

RESUMEN

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Asunto(s)
Archaea , Electrones , Anaerobiosis , Archaea/genética , Archaea/metabolismo , Genómica , Sedimentos Geológicos/microbiología , Metano/metabolismo , Oxidación-Reducción , Filogenia , Sulfatos/metabolismo
19.
Nature ; 568(7750): 108-111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918404

RESUMEN

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps1-3, and through ethane-dependent sulfate reduction in slurries4-7. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown8. Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name 'Candidatus Argoarchaeum ethanivorans'; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca. Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography-tandem mass spectrometry. This indicated that Ca. Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by 'Candidatus Syntrophoarchaeum'9. Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO2 occurs through the oxidative Wood-Ljungdahl pathway. The identification of an archaeon that uses ethane (C2H6) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (CnH2n+2) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca. Argoarchaeum at deep-sea gas seeps10-12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps.


Asunto(s)
Organismos Acuáticos/metabolismo , Archaea/metabolismo , Etano/metabolismo , Anaerobiosis , Archaea/clasificación , Archaea/enzimología , Archaea/genética , Deltaproteobacteria/metabolismo , Etano/química , Gases/química , Gases/metabolismo , Golfo de México , Metano/biosíntesis , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Sulfatos/metabolismo , Sulfuros/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(46): e2210481119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343255

RESUMEN

How clouds respond to anthropogenic sulfate aerosols is one of the largest sources of uncertainty in the radiative forcing of climate over the industrial era. This uncertainty limits our ability to predict equilibrium climate sensitivity (ECS)-the equilibrium global warming following a doubling of atmospheric CO2. Here, we use satellite observations to quantify relationships between sulfate aerosols and low-level clouds while carefully controlling for meteorology. We then combine the relationships with estimates of the change in sulfate concentration since about 1850 to constrain the associated radiative forcing. We estimate that the cloud-mediated radiative forcing from anthropogenic sulfate aerosols is [Formula: see text] W m-2 over the global ocean (95% confidence). This constraint implies that ECS is likely between 2.9 and 4.5 K (66% confidence). Our results indicate that aerosol forcing is less uncertain and ECS is probably larger than the ranges proposed by recent climate assessments.


Asunto(s)
Clima , Meteorología , Aerosoles , Sulfatos , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA