Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.070
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 153(2): 348-61, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582325

RESUMEN

NLRP3 is a key component of the macromolecular signaling complex called the inflammasome that promotes caspase 1-dependent production of IL-1ß. The adaptor ASC is necessary for NLRP3-dependent inflammasome function, but it is not known whether ASC is a sufficient partner and whether inflammasome formation occurs in the cytosol or in association with mitochondria is controversial. Here, we show that the mitochondria-associated adaptor molecule, MAVS, is required for optimal NLRP3 inflammasome activity. MAVS mediates recruitment of NLRP3 to mitochondria, promoting production of IL-1ß and the pathophysiologic activity of the NLRP3 inflammasome in vivo. Our data support a more complex model of NLRP3 inflammasome activation than previously appreciated, with at least two adapters required for maximal function. Because MAVS is a mitochondria-associated molecule previously considered to be uniquely involved in type 1 interferon production, these findings also reveal unexpected polygamous involvement of PYD/CARD-domain-containing adapters in innate immune signaling events.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/química , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Humanos , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Túbulos Renales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Monocitos/inmunología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Necrosis/patología , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia
2.
Annu Rev Physiol ; 86: 379-403, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38012047

RESUMEN

Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.


Asunto(s)
Síndrome de Bartter , Síndrome de Kearns-Sayre , Enfermedades Renales , Humanos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Síndrome de Bartter/metabolismo , Síndrome de Bartter/patología , Síndrome de Kearns-Sayre/metabolismo , Síndrome de Kearns-Sayre/patología , Enfermedades Renales/patología , Mitocondrias
3.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
4.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639584

RESUMEN

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ratones , Inflamasomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Polimixina B/farmacología , Ratones Endogámicos C57BL , Colistina/efectos adversos , Colistina/farmacología , Péptidos/farmacología , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Masculino , FN-kappa B/metabolismo
5.
EMBO Rep ; 24(6): e56128, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37042626

RESUMEN

Surgery-induced renal ischemia and reperfusion (I/R) injury and nephrotoxic drugs like cisplatin can cause acute kidney injury (AKI), for which there is no effective therapy. Lipid accumulation is evident following AKI in renal tubules although the mechanisms and pathological effects are unclear. Here, we report that Ehmt2-encoded histone methyltransferase G9a is upregulated in patients and mouse kidneys after AKI. Renal tubular specific knockout of G9a (Ehmt2Ksp ) or pharmacological inhibition of G9a alleviates lipid accumulation associated with AKI. Mechanistically, G9a suppresses transcription of the lipolytic enzyme Ces1; moreover, G9a and farnesoid X receptor (FXR) competitively bind to the same promoter regions of Ces1. Ces1 is consistently observed to be downregulated in the kidney of AKI patients. Pharmacological inhibition of Ces1 increases lipid accumulation, exacerbates renal I/R-injury and eliminates the beneficial effects on AKI observed in Ehmt2Ksp mice. Furthermore, lipid-lowering atorvastatin and an FXR agonist alleviate AKI by activating Ces1 and reducing renal lipid accumulation. Together, our results reveal a G9a/FXR-Ces1 axis that affects the AKI outcome via regulating renal lipid accumulation.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales , Ratones , Animales , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lesión Renal Aguda/genética , Lesión Renal Aguda/inducido químicamente , Lípidos , Riñón/patología , Ratones Endogámicos C57BL
6.
Mol Ther ; 32(5): 1526-1539, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414248

RESUMEN

The Hippo/YAP pathway plays a critical role in tissue homeostasis. Our previous work demonstrated that renal tubular YAP activation induced by double knockout (dKO) of the upstream Hippo kinases Mst1 and Mst2 promotes tubular injury and renal inflammation under basal conditions. However, the importance of tubular YAP activation remains to be established in injured kidneys in which many other injurious pathways are simultaneously activated. Here, we show that tubular YAP was already activated 6 h after unilateral ureteral obstruction (UUO). Tubular YAP deficiency greatly attenuated tubular cell overproliferation, tubular injury, and renal inflammation induced by UUO or cisplatin. YAP promoted the transcription of the transcription factor KLF5. Consistent with this, the elevated expression of KLF5 and its target genes in Mst1/2 dKO or UUO kidneys was blocked by ablation of Yap in tubular cells. Inhibition of KLF5 prevented tubular cell overproliferation, tubular injury, and renal inflammation in Mst1/2 dKO kidneys. Therefore, our results demonstrate that tubular YAP is a key player in kidney injury. YAP and KLF5 form a transcriptional cascade, where tubular YAP activation induced by kidney injury promotes KLF5 transcription. Activation of this cascade induces tubular cell overproliferation, tubular injury, and renal inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Túbulos Renales , Factores de Transcripción de Tipo Kruppel , Ratones Noqueados , Proteínas Señalizadoras YAP , Animales , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Túbulos Renales/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Serina-Treonina Quinasa 3 , Transducción de Señal , Proliferación Celular , Regulación de la Expresión Génica , Modelos Animales de Enfermedad , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Cisplatino/farmacología
7.
Diabetologia ; 67(7): 1429-1443, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676722

RESUMEN

AIMS: Lactate accumulation is reported to be a biomarker for diabetic nephropathy progression. Lactate drives lysine lactylation, a newly discovered post-translational modification that is involved in the pathogenesis of cancers and metabolic and inflammatory disease. Here, we aimed to determine whether lysine lactylation is involved in the pathogenesis of diabetic nephropathy. METHODS: Renal biopsy samples from individuals with diabetic nephropathy (n=22) and control samples from individuals without diabetes and kidney disease (n=9) were obtained from the First Affiliated Hospital of Zhengzhou University for immunohistochemical staining. In addition, we carried out global lactylome profiling of kidney tissues from db/m and db/db mice using LC-MS/MS. Furthermore, we assessed the role of lysine lactylation and acyl-CoA synthetase family member 2 (ACSF2) in mitochondrial function in human proximal tubular epithelial cells (HK-2). RESULTS: The expression level of lysine lactylation was significantly increased in the kidneys of individuals with diabetes as well as in kidneys from db/db mice. Integrative lactylome analysis of the kidneys of db/db and db/m mice identified 165 upregulated proteins and 17 downregulated proteins, with an increase in 356 lysine lactylation sites and a decrease in 22 lysine lactylation sites decreased. Subcellular localisation analysis revealed that most lactylated proteins were found in the mitochondria (115 proteins, 269 sites). We further found that lactylation of the K182 site in ACSF2 contributes to mitochondrial dysfunction. Finally, the expression of ACSF2 was notably increased in the kidneys of db/db mice and individuals with diabetic nephropathy. CONCLUSIONS: Our study strongly suggests that lysine lactylation and ACSF2 are mediators of mitochondrial dysfunction and may contribute to the progression of diabetic nephropathy. DATA AVAILABILITY: The LC-MS/MS proteomics data have been deposited in the ProteomeXchange Consortium database ( https://proteomecentral.proteomexchange.org ) via the iProX partner repository with the dataset identifier PXD050070.


Asunto(s)
Nefropatías Diabéticas , Túbulos Renales , Lisina , Animales , Ratones , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Lisina/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Coenzima A Ligasas/metabolismo , Procesamiento Proteico-Postraduccional , Lipoilación , Ratones Endogámicos C57BL , Femenino
8.
Am J Physiol Renal Physiol ; 327(1): F61-F76, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721661

RESUMEN

The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.


Asunto(s)
Lesión Renal Aguda , Cilios , Mitocondrias , Triptófano , Animales , Cilios/metabolismo , Cilios/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Perros , Triptófano/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Células de Riñón Canino Madin Darby , Especies Reactivas de Oxígeno/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/deficiencia , Ratones Noqueados
9.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634135

RESUMEN

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Asunto(s)
Lesión Renal Aguda , Tasa de Filtración Glomerular , Ratones Endogámicos C57BL , Daño por Reperfusión , Linfocitos T Reguladores , Animales , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Masculino , Modelos Animales de Enfermedad , Fibrosis , Células Epiteliales/metabolismo , Células Epiteliales/patología , Traslado Adoptivo , Ratones , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Fenotipo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regeneración , Células Cultivadas
10.
Kidney Int ; 106(1): 24-34, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614389

RESUMEN

Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.


Asunto(s)
Ácidos Grasos , Túbulos Renales , Metabolismo de los Lípidos , Humanos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Animales , Ácidos Grasos/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Mitocondrias/metabolismo , Lipogénesis , Oxidación-Reducción , Fibrosis , Especies Reactivas de Oxígeno/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Metabolismo Energético
11.
Kidney Int ; 106(2): 185-188, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032963

RESUMEN

Acute kidney injury is still associated with high morbidity and mortality. Reichardt et al. investigated DNA-binding protein-A (Ybx3) in acute kidney injury induced by ischemia-reperfusion injury and found that mice lacking Ybx3 have altered mitochondrial function and increased antioxidant activity, making them more resistant to ischemia-reperfusion injury-acute kidney injury. The study highlights a new role of the multifaceted protein DNA-binding protein-A, which could be potentially therapeutically exploited.


Asunto(s)
Lesión Renal Aguda , Células Epiteliales , Túbulos Renales , Daño por Reperfusión , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/etiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones , Túbulos Renales/metabolismo , Túbulos Renales/patología , Túbulos Renales/citología , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo
12.
Mol Med ; 30(1): 112, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085830

RESUMEN

BACKGROUND: Patients with type 2 diabetes often face early tubular injury, necessitating effective treatment strategies. This study aimed to evaluate the impact of the SGLT2 inhibitor empagliflozin on early tubular injury biomarkers in type 2 diabetes patients with normoalbuminuria. METHODS: A randomized controlled clinical study comprising 54 patients selected based on specific criteria was conducted. Patients were divided into an intervention group (empagliflozin, n = 27) and a control group (n = 27) and treated for 6 weeks. Tubular injury biomarkers KIM-1 and NGAL were assessed pre- and post-treatment. RESULTS: Both groups demonstrated comparable baseline characteristics. Post-treatment, fasting and postprandial blood glucose levels decreased similarly in both groups. The intervention group exhibited better improvements in total cholesterol, low-density lipoprotein, and blood uric acid levels. Renal function indicators, including UACR and eGFR, showed greater enhancements in the intervention group. Significant reductions in KIM-1 and NGAL were observed in the intervention group. CONCLUSION: Treatment with empagliflozin in type 2 diabetes patients with normoalbuminuria led to a notable decrease in tubular injury biomarkers KIM-1 and NGAL. These findings highlight the potential of SGLT2 inhibitors in early tubular protection, offering a new therapeutic approach.


Asunto(s)
Compuestos de Bencidrilo , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucósidos , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Glucemia , Anciano , Lipocalina 2/sangre , Adulto , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control
13.
Am J Pathol ; 193(3): 275-285, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36586478

RESUMEN

Planar cell polarity (PCP), a process of coordinated alignment of cell polarity across the tissue plane, may contribute to the repair of renal tubules after kidney injury. Intu is a key effector protein of PCP. Herein, conditional knockout (KO) mouse models that ablate Intu specifically from kidney tubules (Intu KO) were established. Intu KO mice and wild-type littermates were subjected to unilateral renal ischemia/reperfusion injury (IRI) or unilateral ureteral obstruction. Kidney repair was evaluated by histologic, biochemical, and immunohistochemical analyses. In vitro, scratch wound healing was examined in Intu-knockdown and control renal tubular cells. Ablation of Intu in renal tubules delayed kidney repair and ameliorated renal fibrosis after renal IRI. Intu KO mice had less renal fibrosis during unilateral ureteral obstruction. Mechanistically, Intu KO kidneys had less senescence but higher levels of cell proliferation and apoptosis during kidney repair after renal IRI. In vitro, Intu knockdown suppressed scratch wound healing in renal tubular cells, accompanied by the abnormality of centrosome orientation. Together, the results provide the first evidence for the involvement of PCP in tubular repair after kidney injury, shedding light on new strategies for improving kidney repair and recovery.


Asunto(s)
Lesión Renal Aguda , Polaridad Celular , Riñón , Daño por Reperfusión , Obstrucción Ureteral , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Polaridad Celular/genética , Polaridad Celular/fisiología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Riñón/metabolismo , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
14.
J Bioenerg Biomembr ; 56(3): 285-296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517565

RESUMEN

Acute kidney injury (AKI) is a serious complication of sepsis patients, but the pathogenic mechanisms underlying AKI are still largely unclear. In this view, the roles of the key component of N6-methyladenosine (m6A)-wilms tumor 1 associated protein (WTAP) in AKI progression were investigated. AKI mice model was established by using cecal ligation and puncture (CLP). AKI cell model was established by treating HK-2 cells with LPS. Cell apoptosis was analyzed by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometry analysis. Cell viability was analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The concentrations of inflammatory factors were examined with ELISA kits. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and Fe2+ levels were detected with related kits. Gene expression was detected by western blot assay or quantitative real-time polymerase chain reaction (qRT-PCR) assay. The relation between WTAP and lamin B1 (LMNB1) was verified by Methylated RNA Immunoprecipitation (meRIP) assay, RIP assay, dual-luciferase reporter assay and Actinomycin D assay. CLP induced significant pathological changes in kidney tissues in mice and promoted inflammation, mitochondrial damage and ferroptosis. LMNB1 level was induced in HK-2 cells by LPS. LMNB1 knockdown promoted LPS-mediated HK-2 cell viability and inhibited LPS-mediated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis. Then, WTAP was demonstrated to promote LMNB1 expression by m6A Methylation modification. Moreover, WTAP knockdown repressed LPS-treated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis, while LMNB1 overexpression reversed the effects. Additionally, WTAP affected the pathways of NF-κB and JAK2/STAT3 by LMNB1. WTAP-mediated m6A promoted the inflammation, mitochondrial damage and ferroptosis in LPS-induced HK-2 cells by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways.


Asunto(s)
Lesión Renal Aguda , Adenosina , Ferroptosis , Inflamación , Janus Quinasa 2 , FN-kappa B , Animales , Humanos , Masculino , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Inflamación/metabolismo , Inflamación/patología , Janus Quinasa 2/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , FN-kappa B/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
15.
J Recept Signal Transduct Res ; 44(1): 27-34, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38660706

RESUMEN

Diabetic kidney disease (DKD) is one of the most serious complications of diabetes and has become the leading cause of end-stage kidney disease, causing serious health damage and a huge economic burden. Tubulointerstitial fibrosis play important role in the development of DKD. Itaconate, a macrophage-specific metabolite, has been reported to have anti-oxidant, anti-inflammatory effects. However, it is unknown whether it perform anti-fibrotic effect in renal tubular epithelial cells. In this current study, we observed that in human renal tubular epithelial cells (HK2), high glucose induced an increase in transforming growth factor ß (TGF-ß) production, and upregulated the expressions of fibronectin and collagen I through the TGF-ß receptor as verified by administration of TGF-ß receptor blocker LY2109761. Treatment with 4-octyl itaconate (4-OI), a derivant of itaconic acid, reduced the TGF-ß production induced by high glucose and inhibited the pro-fibrotic effect of TGF-ß in a dose-dependent manner. In addition, we found that 4-OI exerted its anti-fibrotic effect by inhibiting the excessive production of ROS induced by high glucose and TGF-ß. In summary, 4-OI could ameliorate high glucose-induced pro-fibrotic effect in HK2 cell, and blocking the expression of TGF-ß and reducing the excessive ROS production may be involved in its anti-fibrotic effect.


Asunto(s)
Glucosa , Túbulos Renales , Transducción de Señal , Succinatos , Humanos , Línea Celular , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células Epiteliales/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Fibrosis/tratamiento farmacológico , Glucosa/metabolismo , Túbulos Renales/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Pirazoles , Pirroles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Succinatos/farmacología , Factor de Crecimiento Transformador beta/metabolismo
16.
Toxicol Appl Pharmacol ; 487: 116954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705402

RESUMEN

Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-ß-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.


Asunto(s)
Apoptosis , Células Epiteliales , Túbulos Renales , Quinasas Quinasa Quinasa PAM , Ratas Sprague-Dawley , Daño por Reperfusión , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Daño por Reperfusión/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Masculino , Túbulos Renales/patología , Túbulos Renales/metabolismo , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Línea Celular , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Inflamación/patología , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Transducción de Señal/fisiología
17.
Toxicol Appl Pharmacol ; 485: 116892, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492675

RESUMEN

Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3ß (GSK-3ß) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3ß signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3ß, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-ß1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3ß signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Glucógeno Sintasa Quinasa 3 beta , Túbulos Renales , Síndrome Metabólico , Piridonas , Animales , Piridonas/farmacología , Masculino , Glucósidos/farmacología , Glucósidos/uso terapéutico , Compuestos de Bencidrilo/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratas , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/complicaciones , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regeneración/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
18.
Clin Sci (Lond) ; 138(15): 963-973, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39076039

RESUMEN

Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.


Asunto(s)
Mitocondrias , Regeneración , Humanos , Mitocondrias/metabolismo , Animales , Regeneración/fisiología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Riñón/metabolismo , Células Epiteliales/metabolismo
19.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987851

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Asunto(s)
Senescencia Celular , Células Epiteliales , Exosomas , Túbulos Renales , Macrófagos , MicroARNs , Telómero , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Exosomas/metabolismo , Exosomas/genética , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Macrófagos/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Ratones , Telómero/genética , Telómero/metabolismo , Humanos , Ratones Endogámicos C57BL , Masculino , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Fibrosis/genética , Angiotensina II
20.
Cell Biol Toxicol ; 40(1): 47, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869718

RESUMEN

Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio , Túbulos Renales , ARN Largo no Codificante , Transición Epitelial-Mesenquimal/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Humanos , Ratones , Túbulos Renales/metabolismo , Túbulos Renales/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/metabolismo , Glucosa/farmacología , Fibrosis , Ratones Endogámicos C57BL , Femenino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA