Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 75(5): 933-943.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31326272

RESUMEN

Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.


Asunto(s)
Nucleótidos de Adenina/química , Proteínas Arqueales/química , Sistemas CRISPR-Cas , Oligorribonucleótidos/química , Ribonucleasas/química , Sistemas de Mensajero Secundario , Thermococcus/química , Nucleótidos de Adenina/metabolismo , Proteínas Arqueales/metabolismo , Microscopía por Crioelectrón , Oligorribonucleótidos/metabolismo , Ribonucleasas/metabolismo , Thermococcus/metabolismo , Thermococcus/ultraestructura
2.
Proc Natl Acad Sci U S A ; 121(26): e2318761121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885389

RESUMEN

Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.


Asunto(s)
Archaea , Proteínas Arqueales , Filogenia , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Archaea/metabolismo , Archaea/genética , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerilo/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/biosíntesis
3.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944122

RESUMEN

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Asunto(s)
Proteínas Arqueales , Lisina , Thermococcus , Thermococcus/metabolismo , Thermococcus/genética , Thermococcus/enzimología , Lisina/metabolismo , Lisina/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Archaea/metabolismo , ARN de Archaea/genética , ARN de Archaea/química , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Especificidad por Sustrato , Cinética , Nucleósidos/metabolismo , Nucleósidos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Guanosina/análogos & derivados
4.
Mol Microbiol ; 121(5): 882-894, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372181

RESUMEN

The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.


Asunto(s)
Lípidos de la Membrana , Thermococcus , Lípidos de la Membrana/metabolismo , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerilo/metabolismo , Proteínas Arqueales/metabolismo , Archaea/metabolismo , Lípidos/química
5.
EMBO J ; 39(9): e103788, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064661

RESUMEN

Ribosome recycling by the twin-ATPase ABCE1 is a key regulatory process in mRNA translation and surveillance and in ribosome-associated protein quality control in Eukarya and Archaea. Here, we captured the archaeal 30S ribosome post-splitting complex at 2.8 Å resolution by cryo-electron microscopy. The structure reveals the dynamic behavior of structural motifs unique to ABCE1, which ultimately leads to ribosome splitting. More specifically, we provide molecular details on how conformational rearrangements of the iron-sulfur cluster domain and hinge regions of ABCE1 are linked to closure of its nucleotide-binding sites. The combination of mutational and functional analyses uncovers an intricate allosteric network between the ribosome, regulatory domains of ABCE1, and its two structurally and functionally asymmetric ATP-binding sites. Based on these data, we propose a refined model of how signals from the ribosome are integrated into the ATPase cycle of ABCE1 to orchestrate ribosome recycling.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Thermococcus/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Microscopía por Crioelectrón , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Subunidades Ribosómicas Pequeñas de Archaea/química , Ribosomas/metabolismo , Thermococcus/genética
6.
Nucleic Acids Res ; 50(7): 3601-3615, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34568951

RESUMEN

Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


Asunto(s)
ADN Helicasas , ADN Polimerasa Dirigida por ADN , Thermococcus , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Eucariontes/metabolismo , Thermococcus/enzimología , Thermococcus/metabolismo
7.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849056

RESUMEN

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa III/metabolismo , ADN Primasa/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Thermococcus/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/química , Cromatografía en Gel , ADN Helicasas/genética , ADN Polimerasa III/química , ADN Primasa/genética , ADN Primasa/metabolismo , Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis Sitio-Dirigida , Electroforesis en Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica , Proteínas Recombinantes , Resonancia por Plasmón de Superficie , Thermococcus/genética
8.
Nucleic Acids Res ; 49(21): 12332-12347, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34755863

RESUMEN

In all cells, DNA topoisomerases dynamically regulate DNA supercoiling allowing essential DNA processes such as transcription and replication to occur. How this complex system emerged in the course of evolution is poorly understood. Intriguingly, a single horizontal gene transfer event led to the successful establishment of bacterial gyrase in Archaea, but its emergent function remains a mystery. To better understand the challenges associated with the establishment of pervasive negative supercoiling activity, we expressed the gyrase of the bacterium Thermotoga maritima in a naïve archaeon Thermococcus kodakarensis which naturally has positively supercoiled DNA. We found that the gyrase was catalytically active in T. kodakarensis leading to strong negative supercoiling of plasmid DNA which was stably maintained over at least eighty generations. An increased sensitivity of gyrase-expressing T. kodakarensis to ciprofloxacin suggested that gyrase also modulated chromosomal topology. Accordingly, global transcriptome analyses revealed large scale gene expression deregulation and identified a subset of genes responding to the negative supercoiling activity of gyrase. Surprisingly, the artificially introduced dominant negative supercoiling activity did not have a measurable effect on T. kodakarensis growth rate. Our data suggest that gyrase can become established in Thermococcales archaea without critically interfering with DNA transaction processes.


Asunto(s)
Proteínas Bacterianas/genética , Girasa de ADN/genética , ADN de Archaea/genética , ADN Superhelicoidal/genética , Calor , Thermococcus/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biocatálisis , Ciprofloxacina/farmacología , Girasa de ADN/metabolismo , ADN de Archaea/metabolismo , ADN Superhelicoidal/metabolismo , Regulación de la Expresión Génica Arqueal/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Microscopía Confocal , Plásmidos/genética , Plásmidos/metabolismo , Homología de Secuencia de Ácido Nucleico , Thermococcus/efectos de los fármacos , Thermococcus/metabolismo , Thermotoga maritima/enzimología , Thermotoga maritima/genética
9.
Biotechnol Bioeng ; 119(9): 2388-2398, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35661137

RESUMEN

Prokaryotic Argonaute proteins (pAgos) play an important role in host defense against invading genetic elements. The functional diversities make pAgos very promising in development of novel nucleic acid manipulation tools and attract increasing attentions. Here, we reported the in vitro characterization of an Argonaute protein from archaeon Thermococcus thioreducens (TtrAgo) and its example of application in hepatitis B virus DNA detection. The results showed that TtrAgo functions as a programmable DNA endonuclease by utilizing both short 5'-phosphorylated and 5'-hydroxylated single-stranded DNA guides, and presents high efficiency and accuracy at optimal temperatures ranging from 75°C to 95°C. In addition, TtrAgo also possesses stepwise cleavage activity like PfAgo (Pyrococcus furiosus) and chopping activity toward double-stranded DNA similar to MjAgo (Methanocaldococcus jannaschii). This study increases our understanding of pAgos and expands the Ago-based DNA detection toolbox.


Asunto(s)
Pyrococcus furiosus , Thermococcus , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ADN/metabolismo , Methanocaldococcus/genética , Pyrococcus furiosus/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
10.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468590

RESUMEN

Members of Thermococcales harbor a number of genes encoding putative aminotransferase class III enzymes. Here, we characterized the TK1211 protein from the hyperthermophilic archaeon Thermococcus kodakarensis The TK1211 gene was expressed in T. kodakarensis under the control of the strong, constitutive promoter of the cell surface glycoprotein gene TK0895 (P csg ). The purified protein did not display aminotransferase activity but exhibited racemase activity. An examination of most amino acids indicated that the enzyme was a racemase with relatively high activity toward Leu and Met. Kinetic analysis indicated that Leu was the most preferred substrate. A TK1211 gene disruption strain (ΔTK1211) was constructed and grown on minimal medium supplemented with l- or d-Leu or l- or d-Met. The wild-type T. kodakarensis is not able to synthesize Leu and displays Leu auxotrophy, providing a direct means to examine the Leu racemase activity of the TK1211 protein in vivo When we replaced l-Leu with d-Leu in the medium, the host strain with an intact TK1211 gene displayed an extended lag phase but displayed cell yield similar to that observed in medium with l-Leu. In contrast, the ΔTK1211 strain displayed growth in medium with l-Leu but could not grow with d-Leu. The results indicate that TK1211 encodes a Leu racemase that is active in T. kodakarensis cells and that no other protein exhibits this activity, at least to an extent that can support growth. Growth experiments with l- or d-Met also confirmed the Met racemase activity of the TK1211 protein in T. kodakarensisIMPORTANCE Phylogenetic analysis of aminotransferase class III proteins from all domains of life reveals numerous groups of protein sequences. One of these groups includes a large number of sequences from Thermococcales species and can be divided into four subgroups. Representatives of three of these subgroups have been characterized in detail. This study reveals that a representative from the remaining uncharacterized subgroup is an amino acid racemase with preference toward Leu and Met. Taken together with results of previous studies on enzymes from Pyrococcus horikoshii and Thermococcus kodakarensis, members of the four subgroups now can be presumed to function as a broad-substrate-specificity amino acid racemase (subgroup 1), alanine/serine racemase (subgroup 2), ornithine ω-aminotransferase (subgroup 3), or Leu/Met racemase (subgroup 4).


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Calor , Cinética , Leucina/metabolismo , Metionina/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
11.
Appl Microbiol Biotechnol ; 105(13): 5449-5460, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34223949

RESUMEN

Genomes of hyperthermophiles are facing a severe challenge due to increased deamination rates of cytosine induced by high temperature, which could be counteracted by base excision repair mediated by uracil DNA glycosylase (UDG) or other repair pathways. Our previous work has shown that the two UDGs (Tba UDG247 and Tba UDG194) encoded by the genome of the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 can remove uracil from DNA at high temperature. Herein, we provide evidence that Tba UDG247 is a novel bifunctional glycosylase which can excise uracil from DNA and further cleave the phosphodiester bo nd of the generated apurinic/apyrimidinic (AP) site, which has never been described to date. In addition to cleaving uracil-containing DNA, Tba UDG247 can also cleave AP-containing ssDNA although at lower efficiency, thereby suggesting that the enzyme might be involved in repair of AP site in DNA. Kinetic analyses showed that Tba UDG247 displays a faster rate for uracil excision than for AP cleavage, thus suggesting that cleaving AP site by the enzyme is a rate-limiting step for its bifunctionality. Phylogenetic analysis showed that Tba UDG247 is clustered on a separate branch distant from all the reported UDGs. Overall, we designated Tba UDG247 as the prototype of a novel family of bifunctional UDGs. KEY POINTS: We first reported a novel DNA glycosylase with bifunctionality. Tba UDG247 possesses an AP lyase activity.


Asunto(s)
Thermococcus , Reparación del ADN , Filogenia , Thermococcus/genética , Thermococcus/metabolismo , Uracilo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(27): 7045-7050, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915046

RESUMEN

Ni-Fe clusters are inserted into the large subunit of [NiFe] hydrogenases by maturation proteins such as the Ni chaperone HypA via an unknown mechanism. We determined crystal structures of an immature large subunit HyhL complexed with HypA from Thermococcus kodakarensis Structure analysis revealed that the N-terminal region of HyhL extends outwards and interacts with the Ni-binding domain of HypA. Intriguingly, the C-terminal extension of immature HyhL, which is cleaved in the mature form, adopts a ß-strand adjacent to its N-terminal ß-strands. The position of the C-terminal extension corresponds to that of the N-terminal extension of a mature large subunit, preventing the access of endopeptidases to the cleavage site of HyhL. These findings suggest that Ni insertion into the active site induces spatial rearrangement of both the N- and C-terminal tails of HyhL, which function as a key checkpoint for the completion of the Ni-Fe cluster assembly.


Asunto(s)
Proteínas Arqueales/química , Hidrogenasas/química , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Subunidades de Proteína/química , Thermococcus/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Hidrogenasas/genética , Hidrogenasas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
13.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32041795

RESUMEN

Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensisIMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.


Asunto(s)
Guanosina/análogos & derivados , Methanosarcina/metabolismo , ARN de Archaea/genética , ARN de Transferencia/genética , Thermococcus/metabolismo , Guanosina/metabolismo , Methanosarcina/química , Methanosarcina/genética , Estabilidad del ARN , ARN de Archaea/química , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Thermococcus/química , Thermococcus/genética
14.
RNA ; 24(8): 1080-1092, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29848639

RESUMEN

tRNA molecules get heavily modified post-transcriptionally. The N-1 methylation of purines at position 9 of eukaryal and archaeal tRNA is catalyzed by the SPOUT methyltranferase Trm10. Remarkably, while certain Trm10 orthologs are specific for either guanosine or adenosine, others show a dual specificity. Structural and functional studies have been performed on guanosine- and adenosine-specific enzymes. Here we report the structure and biochemical analysis of the dual-specificity enzyme from Thermococcus kodakaraensis (TkTrm10). We report the first crystal structure of a construct of this enzyme, consisting of the N-terminal domain and the catalytic SPOUT domain. Moreover, crystal structures of the SPOUT domain, either in the apo form or bound to S-adenosyl-l-methionine or S-adenosyl-l-homocysteine reveal the conformational plasticity of two active site loops upon substrate binding. Kinetic analysis shows that TkTrm10 has a high affinity for its tRNA substrates, while the enzyme on its own has a very low methyltransferase activity. Mutation of either of two active site aspartate residues (Asp206 and Asp245) to Asn or Ala results in only modest effects on the N-1 methylation reaction, with a small shift toward a preference for m1G formation over m1A formation. Only a double D206A/D245A mutation severely impairs activity. These results are in line with the recent finding that the single active-site aspartate was dispensable for activity in the guanosine-specific Trm10 from yeast, and suggest that also dual-specificity Trm10 orthologs use a noncanonical tRNA methyltransferase mechanism without residues acting as general base catalysts.


Asunto(s)
Adenosina/química , Guanosina/química , Procesamiento Postranscripcional del ARN/fisiología , Thermococcus/enzimología , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico/fisiología , Cristalografía por Rayos X , Modelos Moleculares , Simulación del Acoplamiento Molecular , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato/genética , Thermococcus/metabolismo
15.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31924613

RESUMEN

To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor.IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.


Asunto(s)
Proteínas Arqueales/metabolismo , Electrones , Hidrogenasas/metabolismo , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transporte de Electrón , Oxidación-Reducción
16.
Amino Acids ; 52(2): 287-299, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31621031

RESUMEN

Branched-chain polyamine (BCPA) synthase (BpsA), encoded by the bpsA gene, is responsible for the biosynthesis of BCPA in the hyperthermophilic archaeon Thermococcus kodakarensis, which produces N4-bis(aminopropyl)spermidine and spermidine. Here, next-generation DNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to perform transcriptomic and proteomic analyses of a T. kodakarensis strain (DBP1) lacking bpsA. Subsequently, the contributions of BCPA to gene transcription (or transcript stabilization) and translation (or protein stabilization) were analyzed. Compared with those in the wild-type strain (KU216) cultivated at 90 °C, the transcript levels of 424 and 21 genes were up- and downregulated in the DBP1 strain, respectively. The expression levels of 12 frequently-used tRNAs were lower in DBP1 cells than KU216 cells, suggesting that BCPA affects translation efficiency in T. kodakarensis. LC-MS analyses of cells grown at 90 °C detected 50 proteins in KU216 cells only, 109 proteins in DBP1 cells only, and 499 proteins in both strains. Notably, the transcript levels of some genes did not correlate with those of the proteins. RNA-seq and RT-qPCR analyses of ten proteins that were detected in KU216 cells only, including three flagellin-related proteins (FlaB2-4) and cytosolic NiFe-hydrogenase subunit alpha (HyhL), revealed that the corresponding transcripts were expressed at higher levels in DBP1 cells than KU216 cells. Electron microscopy analyses showed that flagella formation was disrupted in DBP1 cells at 90 °C, and western blotting confirmed that HyhL expression was eliminated in the DBP1 strain. These results suggest that BCPA plays a regulatory role in gene expression in T. kodakarensis.


Asunto(s)
Poliaminas/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Calor , Hidrogenasas/genética , Hidrogenasas/metabolismo , Poliaminas/química , Thermococcus/crecimiento & desarrollo
17.
Amino Acids ; 52(2): 275-285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31101997

RESUMEN

Branched-chain polyamines (BCPAs) are unique polycations found in (hyper)thermophiles. Thermococcus kodakarensis grows optimally at 85 °C and produces the BCPA N4-bis(aminopropyl)spermidine by sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine (SPD) by BCPA synthase A (BpsA). The T. kodakarensis bpsA deletion mutant (DBP1) did not grow at temperatures at or above 93 °C, and grew at 90 °C only after a long lag period following accumulation of excess cytoplasmic SPD. This suggests that BCPA plays an essential role in cell growth at higher temperatures and raises the possibility that BCPA is involved in controlling gene expression. To examine the effects of BCPA on transcription, the RNA polymerase (RNAP) core fraction was extracted from another bpsA deletion mutant, DBP4 (RNAPDBP4), which carried a His-tagged rpoL, and its enzymatic properties were compared with those of RNAP from wild-type (WT) cells (RNAPWT). LC-MS analysis revealed that nine ribosomal proteins were detected from RNAPWT but only one form RNAPDBP4. These results suggest that BCPA increases the linkage between RNAP and ribosomes to achieve efficient coupling of transcription and translation. Both RNAPs exhibited highest transcription activity in vitro at 80 °C, but the specific activity of RNAPDBP4 was lower than that of RNAPWT. Upon addition of SPD and BCPA, both increased the transcriptional activity of RNAPDBP4; however, elevation by BCPA was achieved at a tenfold lower concentration. Addition of BCPA also protected RNAPDBP4 against thermal inactivation at 90 °C. These results suggest that BCPA increases transcriptional activity in T. kodakarensis by stabilizing the RNAP complex at high temperatures.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Poliaminas/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/genética , ARN Polimerasas Dirigidas por ADN/genética , Estabilidad de Enzimas , Calor , Poliaminas/química , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(33): E6767-E6773, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760969

RESUMEN

RNA polymerase activity is regulated by nascent RNA sequences, DNA template sequences, and conserved transcription factors. Transcription factors promoting initiation and elongation have been characterized in each domain, but transcription termination factors have been identified only in bacteria and eukarya. Here we describe euryarchaeal termination activity (Eta), the first archaeal termination factor capable of disrupting the transcription elongation complex (TEC), detail the rate of and requirements for Eta-mediated transcription termination, and describe a role for Eta in transcription termination in vivo. Eta-mediated transcription termination is energy-dependent, requires upstream DNA sequences, and disrupts TECs to release the nascent RNA to solution. Deletion of TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to DNA damaging agents. Our results suggest that the mechanisms used by termination factors in archaea, eukarya, and bacteria to disrupt the TEC may be conserved, and that Eta stimulates release of stalled or arrested TECs.


Asunto(s)
Archaea/genética , Proteínas Arqueales/metabolismo , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Archaea/metabolismo , ADN de Archaea/genética , ADN de Archaea/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica Arqueal , Modelos Genéticos , Thermococcus/genética , Thermococcus/metabolismo
19.
J Biol Chem ; 293(10): 3625-3636, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29352105

RESUMEN

Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between amino acids and α-keto acids, and are important for the cellular metabolism of nitrogen. Many bacterial and eukaryotic ω-aminotransferases that use l-ornithine (Orn), l-lysine (Lys), or γ-aminobutyrate (GABA) have been identified and characterized, but the corresponding enzymes from archaea are unknown. Here, we examined the activity and function of TK2101, a gene annotated as a GABA aminotransferase, from the hyperthermophilic archaeon Thermococcus kodakarensis We overexpressed the TK2101 gene in T. kodakarensis and purified and characterized the recombinant protein and found that it displays only low levels of GABA aminotransferase activity. Instead, we observed a relatively high ω-aminotransferase activity with l-Orn and l-Lys as amino donors. The most preferred amino acceptor was 2-oxoglutarate. To examine the physiological role of TK2101, we created a TK2101 gene-disruption strain (ΔTK2101), which was auxotrophic for proline. Growth comparison with the parent strain KU216 and the biochemical characteristics of the protein strongly suggested that TK2101 encodes an Orn aminotransferase involved in the biosynthesis of l-Pro. Phylogenetic comparisons of the TK2101 sequence with related sequences retrieved from the databases revealed the presence of several distinct protein groups, some of which having no experimentally studied member. We conclude that TK2101 is part of a novel group of Orn aminotransferases that are widely distributed at least in the genus Thermococcus, but perhaps also throughout the Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Prolina/metabolismo , Thermococcus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Secuencia Conservada , Técnicas de Inactivación de Genes , Calor , Concentración de Iones de Hidrógeno , Ácidos Cetoglutáricos/metabolismo , Cinética , Lisina/metabolismo , Mutación , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/genética , Filogenia , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Thermococcus/crecimiento & desarrollo , Thermococcus/metabolismo
20.
Biochem Biophys Res Commun ; 511(1): 135-140, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30773259

RESUMEN

The hypothetical OCC_00372 protein from Thermococcus litoralis is a member of the ProR superfamily from hyperthermophilic archaea and exhibits unique bifunctional proline racemase/hydroxyproline 2-epimerase activity. However, the molecular mechanism of the broad substrate specificity and extreme thermostability of this enzyme (TlProR) remains unclear. Here we determined the crystal structure of TlProR at 2.7 Šresolution. Of note, a substrate proline molecule, derived from expression host Escherichia coli cells, was tightly bound in the active site of TlProR. The substrate bound structure and mutational analyses suggested that Trp241 is involved in hydroxyproline recognition by making a hydrogen bond between the indole group of Trp241 and the hydroxyl group of hydroxyproline. Additionally, Tyr171 may contribute to the thermostability by making hydrogen bonds between the hydroxyl group of Tyr171 and catalytic residues. Our structural and functional analyses provide a structural basis for understanding the molecular mechanism of substrate specificity and thermostability of ProR superfamily proteins.


Asunto(s)
Isomerasas de Aminoácido/química , Thermococcus/enzimología , Isomerasas de Aminoácido/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Hidroxiprolina/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA