Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567721

RESUMEN

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Asunto(s)
Emparejamiento Base , Escherichia coli , Fluoruros , Conformación de Ácido Nucleico , Riboswitch , Transcripción Genética , Riboswitch/genética , Fluoruros/química , Escherichia coli/genética , Simulación de Dinámica Molecular , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Pliegue del ARN , Magnesio/química , Secuencia de Bases , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Thermus/genética , Thermus/enzimología
2.
Anal Biochem ; 692: 115581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38815728

RESUMEN

A DNA polymerase from Thermus aquaticus remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted. In this study, the l-rhamnose-inducible promoter rhaBAD was utilized due to its ability to produce recombinant protein under tight control in E. coli expression system. Instead of full-length Taq polymerase, an N-terminal deletion of Taq polymerase was selected. To obtain a high-level expression, we attempted to optimize the codon by reducing the rare codon and GC content, and in a second attempt, we optimized the culture conditions for protein expression. The production of Taq polymerase using the optimum culture condition improved the level of expression by up to 3-fold. This approach further proved that a high level of recombinant protein expression could be achieved by yielding a purified Taq polymerase of about 8.5 mg/L of culture. This is the first research publication on the production of Taq polymerase with N-terminal deletion in E. coli with the control of the rhaBAD promoter system.


Asunto(s)
Codón , Escherichia coli , Regiones Promotoras Genéticas , Proteínas Recombinantes , Polimerasa Taq , Escherichia coli/genética , Escherichia coli/metabolismo , Codón/genética , Polimerasa Taq/metabolismo , Polimerasa Taq/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Thermus/genética , Thermus/enzimología , Secuencia de Bases
3.
FEBS J ; 291(13): 2876-2896, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38362811

RESUMEN

Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.


Asunto(s)
Simulación de Dinámica Molecular , Polimerasa Taq , Tirosina , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Polimerasa Taq/metabolismo , Polimerasa Taq/química , Polimerasa Taq/genética , Thermus/enzimología , Thermus/genética , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos/genética , Conformación Proteica , Especificidad por Sustrato , Cinética
4.
Braz. j. med. biol. res ; 31(10): 1239-42, Oct. 1998. tab
Artículo en Inglés | LILACS | ID: lil-223982

RESUMEN

For certain applications of the polymerase chain reaction (PCR), it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq) DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMATM) DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2 per cent and 0.13 per cent error rates for ULTMATM and Taq, respectively, after reading about 3,000 bases each). We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Reacción en Cadena de la Polimerasa , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Thermus/enzimología , Thermus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA