Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.136
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2408160121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39024114

RESUMEN

As the primary cause for chronic pain and disability in elderly individuals, osteoarthritis (OA) is one of the fastest-growing diseases due to the aging world population. To date, the impact of microenvironmental changes on the pathogenesis of OA remains poorly understood, greatly hindering the development of effective therapeutic approaches against OA. In this study, we profiled the differential metabolites in the synovial fluid from OA patients and identified the downregulation of vitamin B1 (VB1) as a metabolic feature in the OA microenvironment. In a murine destabilization of medial meniscus-induced OA model, supplementation of VB1 significantly mitigated the symptoms of OA. Cytokine array analysis revealed that VB1 treatment remarkably reduced the production of a pro-OA factor-C-C Motif Chemokine Ligand 2 (CCL2), in macrophages. Further evidence demonstrated that exogenous CCL2 counteracted the anti-OA function of VB1. Hence, our study unveils a unique biological function of VB1 and provides promising clues for the diet-based treatment of OA.


Asunto(s)
Quimiocina CCL2 , Suplementos Dietéticos , Osteoartritis , Tiamina , Animales , Osteoartritis/metabolismo , Osteoartritis/prevención & control , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Ratones , Humanos , Quimiocina CCL2/metabolismo , Masculino , Tiamina/metabolismo , Tiamina/administración & dosificación , Tiamina/farmacología , Femenino , Líquido Sinovial/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Anciano , Persona de Mediana Edad , Ratones Endogámicos C57BL
2.
PLoS Pathog ; 20(3): e1011663, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498580

RESUMEN

New drugs are needed to shorten and simplify treatment of tuberculosis caused by Mycobacterium tuberculosis. Metabolic pathways that M. tuberculosis requires for growth or survival during infection represent potential targets for anti-tubercular drug development. Genes and metabolic pathways essential for M. tuberculosis growth in standard laboratory culture conditions have been defined by genome-wide genetic screens. However, whether M. tuberculosis requires these essential genes during infection has not been comprehensively explored because mutant strains cannot be generated using standard methods. Here we show that M. tuberculosis requires the phenylalanine (Phe) and de novo purine and thiamine biosynthetic pathways for mammalian infection. We used a defined collection of M. tuberculosis transposon (Tn) mutants in essential genes, which we generated using a custom nutrient-rich medium, and transposon sequencing (Tn-seq) to identify multiple central metabolic pathways required for fitness in a mouse infection model. We confirmed by individual retesting and complementation that mutations in pheA (Phe biosynthesis) or purF (purine and thiamine biosynthesis) cause death of M. tuberculosis in the absence of nutrient supplementation in vitro and strong attenuation in infected mice. Our findings show that Tn-seq with defined Tn mutant pools can be used to identify M. tuberculosis genes required during mouse lung infection. Our results also demonstrate that M. tuberculosis requires Phe and purine/thiamine biosynthesis for survival in the host, implicating these metabolic pathways as prime targets for the development of new antibiotics to combat tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Tuberculosis/genética , Mutación , Mycobacterium tuberculosis/genética , Redes y Vías Metabólicas/genética , Tiamina , Purinas , Mamíferos
3.
Plant J ; 119(1): 432-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635415

RESUMEN

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Asunto(s)
Hordeum , Enfermedades de las Plantas , Proteínas de Plantas , Tiamina , Hordeum/virología , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biosíntesis , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Virales/metabolismo , Proteínas Virales/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad/genética
4.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996996

RESUMEN

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica Ectópica , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bacterias/metabolismo , Proteínas de Unión al ADN/genética
5.
Annu Rev Biochem ; 78: 569-603, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19348578

RESUMEN

Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.


Asunto(s)
Tiamina/biosíntesis , Animales , Células Eucariotas/metabolismo , Hongos/metabolismo , Humanos , Plantas/metabolismo , Células Procariotas/metabolismo , Pirimidinas/química , Tiamina/química , Tiazoles/química
6.
Crit Rev Biochem Mol Biol ; 57(5-6): 461-476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36403141

RESUMEN

Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.


Asunto(s)
Coenzimas , Azufre , Azufre/metabolismo , Coenzimas/metabolismo , Tiamina , Hierro/química
7.
J Biol Chem ; 299(9): 105152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567475

RESUMEN

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Asunto(s)
Coenzimas , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferasas , Humanos , Antibacterianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Transferasas/química , Transferasas/metabolismo , Conformación Proteica , Coenzimas/metabolismo , Vitamina B 6/biosíntesis , Tiamina/biosíntesis , Apoenzimas/química , Apoenzimas/metabolismo , Tiamina Pirofosfato/metabolismo , Dominio Catalítico , Farmacorresistencia Bacteriana
8.
Crit Care Med ; 52(3): 441-451, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947484

RESUMEN

OBJECTIVE: Sepsis is a leading cause of mortality. Predicting outcomes is challenging and few biomarkers perform well. Defects in the renin-angiotensin system (RAS) can predict clinical outcomes in sepsis and may outperform traditional biomarkers. We postulated that RAS dysfunction (elevated active renin, angiotensin 1-7 [Ang-(1-7)], and angiotensin-converting enzyme 2 (ACE2) activity with depressed Ang-II and ACE activity) would be associated with mortality in a cohort of septic patients. DESIGN: Post hoc analysis of patients enrolled in the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) randomized controlled trial. SETTING: Forty-three hospitals across the United States. PATIENTS: Biorepository samples of 103 patients. INTERVENTIONS: We analyzed day 0 (within 24 hr of respiratory failure, septic shock, or both) and day 3 samples ( n = 103 and 95, respectively) for assessment of the RAS. The association of RAS values with 30-day mortality was determined using Cox proportional hazards regression with multivariable adjustments for age, sex, VICTAS treatment arm, systolic blood pressure, Sequential Organ Failure Assessment Score, and vasopressor use. MEASUREMENTS AND MAIN RESULTS: High baseline active renin values were associated with higher 30-day mortality when dichotomized to the median of 188.7 pg/mL (hazard ratio [HR] = 2.84 [95% CI, 1.10-7.33], p = 0.031) or stratified into quartiles (Q1 = ref, HR Q2 = 2.01 [0.37-11.04], HR Q3 = 3.22 [0.64-16.28], HR Q4 = 5.58 [1.18-26.32], p for linear trend = 0.023). A 1- sd (593.6 pg/mL) increase in renin from day 0 to day 3 was associated with increased mortality (HR = 3.75 [95% CI, 1.94-7.22], p < 0.001), and patients whose renin decreased had improved survival compared with those whose renin increased (HR 0.22 [95% CI, 0.08-0.60], p = 0.003). Ang-(1-7), ACE2 activity, Ang-II and ACE activity did not show this association. Mortality was attenuated in patients with renin over the median on day 0 who received the VICTAS intervention, but not on day 3 ( p interaction 0.020 and 0.137, respectively). There were no additional consistent patterns of mortality on the RAS from the VICTAS intervention. CONCLUSIONS: Baseline serum active renin levels were strongly associated with mortality in critically ill patients with sepsis. Furthermore, a greater relative activation in circulating renin from day 0 to day 3 was associated with a higher risk of death.


Asunto(s)
Renina , Sepsis , Humanos , Ácido Ascórbico/uso terapéutico , Tiamina/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Enfermedad Crítica , Sistema Renina-Angiotensina/fisiología , Vitaminas/uso terapéutico , Biomarcadores , Esteroides/uso terapéutico , Sepsis/tratamiento farmacológico
9.
Plant Biotechnol J ; 22(5): 1335-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100262

RESUMEN

Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.


Asunto(s)
Virus de Plantas , Virosis , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas/genética , Virus de Plantas/genética , Tiamina , Enfermedades de las Plantas
10.
J Transl Med ; 22(1): 165, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365743

RESUMEN

BACKGROUND: This study aims to investigate the relationship between vitamin B1 intake and cognitive function in older adults. METHODS: This cross-sectional observational study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. A total of 2422 participants were included in the analysis, with dietary vitamin B1 intake being determined by averaging two 24-h dietary recalls. Cognitive function was assessed using three cognitive function tests: the Digit Symbol Substitution Test (DSST) for processing speed, the Animal Fluency Test (AFT) for executive function, a Consortium to Establish a Registry for Alzheimer's disease (CERAD) subtest for memory. Test-specific and global cognition z score was created. Multivariate linear regression models were used to explore the association between vitamin B1 and cognitive function. RESULTS: 2422 participants, aged 60 years and older, were included from NHANES across two survey cycles (2011-2014). Higher vitamin B1 intake was associated with higher DSST, AFT scores (P < 0.001) as well as the global cognition z score (P = 0.008). In the fully adjusted model, as compared to the lowest quartile (Q1), the highest quartile (Q4) of vitamin B1 intake was related to higher DSST score (ß = 2.23, 95% CI 0.79 ~ 3.67) and global cognition z sore (ß = 0.09, 95% CI 0.02 ~ 0.16). The association between dietary vitamin B1 intake and cognitive function scores in US adults is linear. There was no detected significant statistical interaction between these variables. CONCLUSIONS: Increased dietary intake of vitamin B1 was associated with better cognitive function in individuals aged over 60.


Asunto(s)
Cognición , Dieta , Animales , Humanos , Persona de Mediana Edad , Anciano , Estudios Transversales , Encuestas Nutricionales , Tiamina
11.
Metab Eng ; 82: 201-215, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364997

RESUMEN

Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S. cerevisiae CEN.PK113-7D in the absence of pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and/or biotin were corrected by single or combined overexpression of ScFMS1, ScABZ1/ScABZ2, ScSNZ1/ScSNO1, ScINO1 and Cyberlindnera fabianii BIO1, respectively. Several strategies were explored to improve growth of S. cerevisiae CEN.PK113-7D in thiamine-free medium. Overexpression of ScTHI4 and/or ScTHI5 enabled thiamine-independent growth at 83% of the maximum specific growth rate of the reference strain in vitamin-supplemented medium. Combined overexpression of seven native S. cerevisiae genes and CfBIO1 enabled a maximum specific growth rate of 0.33 ± 0.01 h-1 in vitamin-free synthetic medium. This growth rate was only 17 % lower than that of a congenic reference strain in vitamin-supplemented medium. Physiological parameters of the engineered vitamin-independent strain in aerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) grown on vitamin-free synthetic medium were similar to those of similar cultures of the parental strain grown on vitamin-supplemented medium. Transcriptome analysis revealed only few differences in gene expression between these cultures, which primarily involved genes with roles in Class-B vitamin metabolism. These results pave the way for development of fast-growing vitamin-independent industrial strains of S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vitaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biotina/metabolismo , Tiamina , Medios de Cultivo
12.
Appl Environ Microbiol ; 90(1): e0176023, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38084986

RESUMEN

Thiamine deficiency complex (TDC) is a major emerging threat to global populations of culturally and economically important populations of salmonids. Salmonid eggs and embryos can assimilate exogenous thiamine, and evidence suggests that microbial communities in benthic environments can produce substantial amounts of thiamine. We therefore hypothesize that natural dissolved pools of thiamine exist in the surface water and hyporheic zones of riverine habitats where salmonids with TDC migrate, spawn, and begin their lives. To examine the relationship between dissolved thiamine-related compounds (dTRCs) and their microbial source, we determined the concentrations of these metabolites and the compositions of microbial communities in surface and hyporheic waters of the Sacramento River, California and its tributaries. Here we determine that all dTRCs are present in femto-picomolar concentrations in a range of critically important salmon spawning habitats. We observed that thiamine concentrations in the Sacramento River system are orders of magnitude lower than those of marine waters, indicating substantial differences in thiamine cycling between these two environments. Our data suggest that the hyporheic zone is likely the source of thiamine to the overlying surface water. Temporal variations in dTRC concentrations were observed where the highest concentrations existed when Chinook salmon were actively spawning. Significant correlations were seen between the richness of microbial taxa and dTRC concentrations, particularly in the hyporheic zone, which would influence the conditions where embryonic salmon incubate. Together, these results indicate a connection between microbial communities in freshwater habitats and the availability of thiamine to spawning TDC-impacted California Central Valley Chinook salmon.IMPORTANCEPacific salmon are keystone species with considerable economic importance and immeasurable cultural significance to Pacific Northwest indigenous peoples. Thiamine deficiency complex has recently been diagnosed as an emerging threat to the health and stability of multiple populations of salmonids ranging from California to Alaska. Microbial biosynthesis is the major source of thiamine in marine and aquatic environments. Despite this importance, the concentrations of thiamine and the identities of the microbial communities that cycle it are largely unknown. Here we investigate microbial communities and their relationship to thiamine in Chinook salmon spawning habitats in California's Sacramento River system to gain an understanding of how thiamine availability impacts salmonids suffering from thiamine deficiency complex.


Asunto(s)
Microbiota , Deficiencia de Tiamina , Animales , Salmón , Tiamina , Ríos , Agua
13.
J Pediatr ; 268: 113961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369233

RESUMEN

OBJECTIVE: To develop a predictive model for thiamine responsive disorders (TRDs) among infants and young children hospitalized with signs or symptoms suggestive of thiamine deficiency disorders (TDDs) based on response to therapeutic thiamine in a high-risk setting. STUDY DESIGN: Children aged 21 days to <18 months hospitalized with signs or symptoms suggestive of TDD in northern Lao People's Democratic Republic were treated with parenteral thiamine (100 mg daily) for ≥3 days in addition to routine care. Physical examinations and recovery assessments were conducted frequently for 72 hours after thiamine was initiated. Individual case reports were independently reviewed by three pediatricians who assigned a TRD status (TRD or non-TRD), which served as the dependent variable in logistic regression models to identify predictors of TRD. Model performance was quantified by empirical area under the receiver operating characteristic curve. RESULTS: A total of 449 children (median [Q1, Q3] 2.9 [1.7, 5.7] months old; 70.3% exclusively/predominantly breastfed) were enrolled; 60.8% had a TRD. Among 52 candidate variables, those most predictive of TRD were exclusive/predominant breastfeeding, hoarse voice/loss of voice, cyanosis, no eye contact, and no diarrhea in the previous 2 weeks. The area under the receiver operating characteristic curve (95% CI) was 0.82 (0.78, 0.86). CONCLUSIONS: In this study, the majority of children with signs or symptoms of TDD responded favorably to thiamine. While five specific features were predictive of TRD, the high prevalence of TRD suggests that thiamine should be administered to all infants and children presenting with any signs or symptoms consistent with TDD in similar high-risk settings. The usefulness of the predictive model in other contexts warrants further exploration and refinement. TRIAL REGISTRATION: Clinicaltrials.gov NCT03626337.


Asunto(s)
Pueblos del Sudeste Asiático , Deficiencia de Tiamina , Tiamina , Humanos , Laos/epidemiología , Lactante , Masculino , Femenino , Deficiencia de Tiamina/diagnóstico , Deficiencia de Tiamina/epidemiología , Deficiencia de Tiamina/tratamiento farmacológico , Estudios Prospectivos , Tiamina/uso terapéutico , Tiamina/administración & dosificación , Recién Nacido , Complejo Vitamínico B/uso terapéutico , Complejo Vitamínico B/administración & dosificación
14.
Curr Opin Clin Nutr Metab Care ; 27(2): 155-162, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205831

RESUMEN

PURPOSE OF REVIEW: Thiamine is a crucial component in cellular energy metabolism, serving as a cofactor for multiple enzymatic processes and also having a role in regulating neuronal and neuromuscular transmission. Also it exerts antioxidant proprieties. The objective of this review is to consolidate and assess the most recent research concerning the consequences of insufficient thiamine levels for critically ill patients and to examine thiamine-related interventions. RECENT FINDINGS: Recent studies have unveiled a noteworthy association between thiamine deficiency and unfavorable consequences, such as heightened morbidity and fatality rates. The aforementioned deficiency exhibits a significant presence in medical situations such as starvation and alcohol use disorder, but also in patients during critical illness. Thiamine deficiency can have significant metabolic implications resulting in compromised energy generation and organ dysfunction, warranting prompt recognition and management. SUMMARY: Thiamine deficiency may not be recognized in critical care. Timely identification and management are imperative to mitigate adverse outcomes and improve patient prognosis. Thiamine may offer benefits for specific patient groups at higher risk of deficiency. Future studies should focus to establish optimal dosing, timing, and monitoring strategies on understanding the pathophysiological changes associated with thiamine deficiency in ICU patients and clarify its role in improving clinical outcomes.


Asunto(s)
Enfermedad Crítica , Deficiencia de Tiamina , Humanos , Deficiencia de Tiamina/complicaciones , Deficiencia de Tiamina/metabolismo , Tiamina , Cuidados Críticos/métodos , Metabolismo Energético
15.
Arch Biochem Biophys ; 753: 109888, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232797

RESUMEN

The haloacid dehalogenase superfamily implicated in bacterial pathogenesis comprises different enzymes having roles in many metabolic pathways. Staphylococcus lugdunensis, a Gram-positive bacterium, is an opportunistic human pathogen causing infections in the central nervous system, urinary tract, bones, peritoneum, systemic conditions and cutaneous infection. The haloacid dehalogenase superfamily proteins play a significant role in the pathogenicity of certain bacteria, facilitating invasion, survival, and proliferation within host cells. The genome of S. lugdunensis encodes more than ten proteins belonging to this superfamily. However, none of them have been characterized. The present work reports the characterization of one of the haloacid dehalogenase superfamily proteins (SLHAD1) from Staphylococcus lugdunensis. The functional analysis revealed that SLHAD1 is a metal-dependent acid phosphatase, which catalyzes the dephosphorylation of phosphorylated metabolites of cellular pathways, including glycolysis, gluconeogenesis, nucleotides, and thiamine metabolism. Based on the substrate specificity and genomic analysis, the physiological function of SLHAD1 in thiamine metabolism has been tentatively assigned. The crystal structure of SLHAD1, lacking 49 residues at the C-terminal, was determined at 1.7 Å resolution with a homodimer in the asymmetric unit. It was observed that SLHAD1 exhibited time-dependent cleavage at a specific point, occurring through a self-initiated process. A combination of bioinformatics, biochemical, biophysical, and structural studies explored unique features of SLHAD1. Overall, the study revealed a detailed characterization of a critical enzyme of the human pathogen Staphylococcus lugdunensis, associated with several life-threatening infections.


Asunto(s)
Fosfatasa Ácida , Staphylococcus lugdunensis , Humanos , Staphylococcus lugdunensis/metabolismo , Hidrolasas/química , Bacterias , Tiamina
16.
Biomacromolecules ; 25(7): 4604-4614, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922332

RESUMEN

As a natural renewable biomacromolecule, lignin has some inherently interesting properties such as fluorescence, antioxidation, and antibacterial performance. However, the unsatisfactory fluorescence and biological activities have greatly limited their value-added and large-scale applications. In this work, lignin nanoparticles (LNPs) grafted with vitamin B1 hybrid nanoparticles (LEVs) were obtained by using ethylenediamine and different contents of vitamin B1 through a simple hydrothermal method. The chemical structure, fluorescence properties, and bioactivity were characterized to assess the effects of ethylenediamine and vitamin B1 on the properties of LEVs. It was found that the fluorescence performance of synthesized LEV particles was improved with the increase in the amount of vitamin B1. The free radical scavenging rate (RSA, %) increased to 97.8%, while the antibacterial rates reached up to 99.9%. The antibacterial activity of LEV involved multiple combined mechanisms. The introduction of imine, amide groups, and positively charged VB1 of LEV will make it easier to interact with the negatively charged bacterial phospholipid membranes and cause bacterial lysis and death. Then, the PVA/LEV hydrogel composites were prepared by the freezing-thawing method, and the results showed that PVA/LEV hydrogels had more comprehensive performance such as improved mechanical properties and antioxidant and antibacterial activities, resulting in its great potential to be used as an efficient biomedical material.


Asunto(s)
Antibacterianos , Lignina , Antibacterianos/farmacología , Antibacterianos/química , Lignina/química , Lignina/farmacología , Nanopartículas/química , Tiamina/química , Tiamina/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Fluorescencia , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología
17.
Eur J Neurol ; 31(3): e16155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38018774

RESUMEN

BACKGROUND AND PURPOSE: Despite thiamine deficiency being a lesser-known entity in modern times, beriberi in various forms, including thiamine deficiency-related neuropathy, remains endemic in Kashmir due to the consumption of polished rice as a staple food. This observational study investigates cases of peripheral neuropathy of unknown etiology and their potential responsiveness to thiamine administration. METHODS: This prospective study enrolled adult patients presenting to the emergency department with weakness consistent with thiamine deficiency-related neuropathy and conducted a therapeutic challenge with thiamine on 41 patients. Response to thiamine therapy was monitored based on subjective and objective improvements in weakness and power. Patients were divided into thiamine responders (n = 25) and nonresponders (n = 16) based on their response to thiamine therapy and nerve conduction studies. RESULTS: Most of the baseline characteristics were similar between responders and nonresponders, except the responders exhibited lower thiamine levels and higher partial pressure of oxygen and lactate levels compared to nonresponders. All patients had a history of consuming polished rice and traditional salt tea. Although weakness in the lower limbs was present in both groups, nonresponders were more likely to exhibit weakness in all four limbs. Clinical improvement was observed within 24 h, but proximal muscle weakness persisted for an extended period of time. CONCLUSIONS: Thiamine deficiency-related neuropathy presents with predominant lower limb weakness, exacerbated by vomiting, poor food intake, psychiatric illness, and pregnancy. Thiamine challenge should be followed by observation of clinical and biochemical response.


Asunto(s)
Beriberi , Enfermedades del Sistema Nervioso Periférico , Deficiencia de Tiamina , Adulto , Femenino , Embarazo , Humanos , Beriberi/complicaciones , Beriberi/tratamiento farmacológico , Estudios Prospectivos , Deficiencia de Tiamina/complicaciones , Deficiencia de Tiamina/tratamiento farmacológico , Tiamina/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/complicaciones , Debilidad Muscular/etiología
18.
Br J Nutr ; 131(2): 256-264, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-37565530

RESUMEN

We aimed to study supplement use in relation to dietary intake among pregnant women in Sweden, and adherence to the Nordic Nutrition Recommendations among supplement and non-supplement users. Pregnant women were recruited at registration to antenatal care in 2013­2014. In third trimester, supplement use was collected using a questionnaire, and dietary intake was collected using a FFQ. The majority (64 %) of the 1044 women reported use of one or more supplements. Among all, 0­23 % reported dietary intakes above recommended intake (RI) of vitamin D, folate, Fe and Se. Median dietary intakes of thiamine (1·4 v. 1·3 mg P = 0·013), phosphorus (1482 v. 1440 mg P = 0·007), folate (327 v. 316 µg P = 0·02), Fe (12 v. 11·5 mg P = 0·009), Mg (361 v. 346 mg P < 0·001) and Zn (10·7 v. 10·4 mg P = 0·01) were higher among supplement users compared with non-users. Larger proportions of supplement users than non-users adhered to RI of dietary intakes of thiamine (42 % v. 35 % P = 0·04) and Mg (75 % v. 69 % P = 0·05). Among non-users, a minority had dietary intakes above RI for vitamin D (6 %), folate (10 %) and Fe (21 %). The majority (75­100 %) of supplement users had total intakes above RI for most nutrients. In conclusion, supplement use contributed substantially to reaching RI for vitamin D, folate and Fe. Supplement users had a higher dietary intake of several nutrients than non-users. This highlights that non-supplement users are at risk of inadequate nutrient intakes during pregnancy, suggesting a need for heightened awareness of nutritional adequacy for pregnant women.


Asunto(s)
Suplementos Dietéticos , Vitaminas , Femenino , Humanos , Embarazo , Suecia , Ingestión de Alimentos , Ácido Fólico , Vitamina D , Tiamina , Dieta , Necesidades Nutricionales
19.
Br J Nutr ; 131(4): 686-697, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-37781761

RESUMEN

The human gut microbiota can biosynthesize essential micronutrients such as B-vitamins and is also known for its metabolic cooperative behaviour. The present study characterises such B-vitamin biosynthesizers, their biosynthetic pathways, explores their prevalence and abundance, examines how lifestyle or diet affects them in multiple Indian cohorts and compares it with the Chinese cohort. To achieve this, publicly available faecal metagenome data of healthy individuals from multiple Indian (two urban and three tribal populations) and a Chinese cohort were analysed. The distribution of prevalence and abundance of B-vitamin biosynthesizers showed similar profiles to that of the entire gut community of the Indian cohort, and there were 28 B-vitamin biosynthesizers that had modest or higher prevalence and abundance. The omnivorous diet affected only the prevalence of a few B-vitamin biosynthesizers; however, lifestyle and/or location affected both prevalence and abundance. A comparison with the Chinese cohort showed that fourteen B-vitamin biosynthesizers were significantly more prevalent and abundant in Chinese as compared with Indian samples (False Discovery Rate (FDR) <= 0·05). The metabolic potential of the entire gut community for B-vitamin production showed that within India, the tribal cohort has a higher abundance of B-vitamin biosynthesis pathways as compared with two urban cohorts namely, Bhopal and Kasargod, and comparison with the Chinese cohort revealed a higher abundance in the latter group. Potential metabolic cooperative behaviour of the Indian gut microbiome for biosynthesis of the B-vitamins showed multiple pairs of species showed theoretical complementarity for complete biosynthetic pathways genes of thiamine, riboflavin, niacin and pantothenate.


Asunto(s)
Microbioma Gastrointestinal , Complejo Vitamínico B , Humanos , Microbioma Gastrointestinal/genética , Tiamina , Riboflavina/análisis , China
20.
Bioorg Med Chem Lett ; 98: 129571, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38036274

RESUMEN

Pyruvate dehydrogenase complex (PDHc) is suppressed in some cancer types but overexpressed in others. To understand its contrasting oncogenic roles, there is a need for selective PDHc inhibitors. Its E1-subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme and catalyses the first and rate-limiting step of the complex. In a recent study, we reported a series of ester-based thiamine analogues as selective TPP-competitive PDH E1 inhibitors with low nanomolar affinity. However, when the ester linker was replaced with an amide for stability reasons, the binding affinity was significantly reduced. In this study, we show that an amino-oxetane bioisostere of the amide improves the affinity and maintains stability towards esterase-catalysed hydrolysis.


Asunto(s)
Complejo Piruvato Deshidrogenasa , Tiamina Pirofosfato , Tiamina , Amidas , Ésteres , Oxidorreductasas , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Complejo Piruvato Deshidrogenasa/metabolismo , Piruvatos , Tiamina/farmacología , Tiamina Pirofosfato/metabolismo , Tiamina Pirofosfato/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA