Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(1): 432-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635415

RESUMEN

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Asunto(s)
Hordeum , Enfermedades de las Plantas , Proteínas de Plantas , Tiamina , Hordeum/virología , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biosíntesis , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Virales/metabolismo , Proteínas Virales/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad/genética
2.
Annu Rev Biochem ; 78: 569-603, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19348578

RESUMEN

Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.


Asunto(s)
Tiamina/biosíntesis , Animales , Células Eucariotas/metabolismo , Hongos/metabolismo , Humanos , Plantas/metabolismo , Células Procariotas/metabolismo , Pirimidinas/química , Tiamina/química , Tiazoles/química
3.
J Biol Chem ; 299(9): 105152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567475

RESUMEN

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Asunto(s)
Coenzimas , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferasas , Humanos , Antibacterianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Transferasas/química , Transferasas/metabolismo , Conformación Proteica , Coenzimas/metabolismo , Vitamina B 6/biosíntesis , Tiamina/biosíntesis , Apoenzimas/química , Apoenzimas/metabolismo , Tiamina Pirofosfato/metabolismo , Dominio Catalítico , Farmacorresistencia Bacteriana
4.
Mol Microbiol ; 115(4): 539-553, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33034117

RESUMEN

The production of the pyrimidine moiety in thiamine synthesis, 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate (HMP-P), has been described to proceed through the Thi5-dependent pathway in Saccharomyces cerevisiae and other yeast. Previous work found that ScThi5 functioned poorly in a heterologous context. Here we report a bacterial ortholog to the yeast HMP-P synthase (Thi5) was necessary for HMP synthesis in Legionella pneumophila. Unlike ScThi5, LpThi5 functioned in vivo in Salmonella enterica under multiple growth conditions. The protein LpThi5 is a dimer that binds pyridoxal-5'-phosphate (PLP), apparently without a solvent-exposed Schiff base. A small percentage of LpThi5 protein co-purifies with a bound molecule that can be converted to HMP. Analysis of variant proteins both in vivo and in vitro confirmed that residues in sequence motifs conserved across bacterial and eukaryotic orthologs modulate the function of LpThi5. IMPORTANCE: Thiamine is an essential vitamin for the vast majority of organisms. There are multiple strategies to synthesize and salvage this vitamin. The predominant pathway for synthesis of the pyrimidine moiety of thiamine involves the Fe-S cluster protein ThiC. An alternative pathway utilizes Thi5, a novel enzyme that uses PLP as a substrate. The Thi5-dependent pathway is poorly characterized in yeast and has not been characterized in Bacteria. Here we demonstrate that a Thi5-dependent pathway is necessary for thiamine biosynthesis in Legionella pneumophila and provide biochemical data to extend knowledge of the Thi5 enzyme, the corresponding biosynthetic pathway, and the role of metabolic network architecture in optimizing its function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Legionella pneumophila/química , Legionella pneumophila/enzimología , Legionella pneumophila/metabolismo , Fosfato de Piridoxal/metabolismo , Pirimidinas/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Vías Biosintéticas , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Legionella pneumophila/genética , Filogenia , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/metabolismo , Tiamina/biosíntesis
5.
Plant Physiol ; 186(4): 1832-1847, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33944954

RESUMEN

Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate, as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1), and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant's intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of nonphosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Hierro-Azufre/genética , Ingeniería Metabólica , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Tiamina/biosíntesis , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Hierro-Azufre/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
6.
Biochem J ; 478(17): 3265-3279, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34409984

RESUMEN

Plant and fungal THI4 thiazole synthases produce the thiamin thiazole moiety in aerobic conditions via a single-turnover suicide reaction that uses an active-site Cys residue as sulfur donor. Multiple-turnover (i.e. catalytic) THI4s lacking an active-site Cys (non-Cys THI4s) that use sulfide as sulfur donor have been biochemically characterized -- but only from archaeal methanogens that are anaerobic, O2-sensitive hyperthermophiles from sulfide-rich habitats. These THI4s prefer iron as cofactor. A survey of prokaryote genomes uncovered non-Cys THI4s in aerobic mesophiles from sulfide-poor habitats, suggesting that multiple-turnover THI4 operation is possible in aerobic, mild, low-sulfide conditions. This was confirmed by testing 23 representative non-Cys THI4s for complementation of an Escherichia coli ΔthiG thiazole auxotroph in aerobic conditions. Sixteen were clearly active, and more so when intracellular sulfide level was raised by supplying Cys, demonstrating catalytic function in the presence of O2 at mild temperatures and indicating use of sulfide or a sulfide metabolite as sulfur donor. Comparative genomic evidence linked non-Cys THI4s with proteins from families that bind, transport, or metabolize cobalt or other heavy metals. The crystal structure of the aerotolerant bacterial Thermovibrio ammonificans THI4 was determined to probe the molecular basis of aerotolerance. The structure suggested no large deviations compared with the structures of THI4s from O2-sensitive methanogens, but is consistent with an alternative catalytic metal. Together with complementation data, use of cobalt rather than iron was supported. We conclude that catalytic THI4s can indeed operate aerobically and that the metal cofactor inserted is a likely natural determinant of aerotolerance.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Bacterias/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Tiamina/biosíntesis , Proteínas Arqueales/genética , Biocatálisis , Dominio Catalítico , Cobalto/metabolismo , Cristalización , Cisteína/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genómica/métodos , Hierro/metabolismo , Microorganismos Modificados Genéticamente , Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Sulfuros/metabolismo , Azufre/metabolismo
7.
J Biol Chem ; 295(29): 10081-10091, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32404369

RESUMEN

Thiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. Thiamine biosynthesis occurs in bacteria but not in humans; therefore, the enzymes in this pathway are attractive targets for antibiotic development. Among these enzymes, thiamine monophosphate kinase (ThiL) catalyzes the final step of this pathway, phosphorylating thiamine monophosphate to produce TPP. Here, we extensively investigated ThiL in Pseudomonas aeruginosa, a major pathogen responsible for hospital-acquired infections. We demonstrate that thiL deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability and results in growth defects of the ΔthiL strain even in the presence of thiamine derivatives, except for TPP. Most importantly, the pathogenesis of the ΔthiL strain was markedly attenuated, compared with that of WT cells, with lower inflammatory cytokine induction and 103-104-fold decreased bacterial loads in an in vivo infection model in which the intracellular TPP level was in the submicromolar range. To validate P. aeruginosa ThiL (PaThiL) as a drug target, we further characterized its biochemical properties, determining a Vmax of 4.0 ± 0.2 nmol·min-1 and Km values of 111 ± 8 and 8.0 ± 3.5 µm for ATP and thiamine monophosphate, respectively. An in vitro small-molecule screening assay identified PaThiL inhibitors including WAY213613, a noncompetitive inhibitor with a Ki value of 13.4 ± 2.3 µm and potential antibacterial activity against P. aeruginosa These comprehensive biological and biochemical results indicate that PaThiL represents a potential drug target for the development of an augmented repertoire of antibiotics against P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor del Grupo Fosfato) , Pseudomonas aeruginosa/enzimología , Tiamina/biosíntesis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Pseudomonas aeruginosa/genética
8.
Mol Plant Microbe Interact ; 34(10): 1193-1208, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34081536

RESUMEN

Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Erwinia amylovora , Polisacáridos Bacterianos/biosíntesis , Tiamina/biosíntesis , Proteínas Bacterianas/genética , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Genes Bacterianos , Enfermedades de las Plantas , Transducción de Señal
9.
Biochem J ; 477(11): 2055-2069, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32441748

RESUMEN

Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ligasas , Modelos Moleculares , Plantas Modificadas Genéticamente , Tiamina , Tiazoles/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catálisis , Biología Computacional , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Dominios Proteicos , Tiamina/biosíntesis , Tiamina/genética
10.
J Invertebr Pathol ; 184: 107639, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139258

RESUMEN

Beauveria bassiana is an important entomopathogenic fungus used to control a variety of insect pests. Conidia are the infective propagules of the fungus. However, some important factors that influence conidiation are still to be investigated. In this study, a mutant with decreased conidial production and hyphal growth was identified from a random T-DNA insertional library of B. bassiana. The corresponding gene (Bbthi) for this mutation encodes a putative thiazole synthase. Thiazole and pyrimidine are structural components of thiamine (vitamin B1), which is an essential nutrient for all forms of life. Disruption of Bbthi, Bbpyr, a putative pyrimidine synthetic gene, or both in B. bassiana results in a significant decrease of thiamine content. Loss of Bbthi and Bbpyr function significantly decreased the conidial production and hyphal growth, as well as disrupted the integrity of conidial cell wall. However, the defect of Bbpyr and Bbthi does not decrease the virulence of B. bassiana. Our results indicate the importance of thiamine biosynthesis in conidiation of B. bassiana, and provide useful information to produce conidia of entomopathogenic fungi for biocontrol of insect pests.


Asunto(s)
Beauveria/genética , Proteínas Fúngicas/genética , Genes Fúngicos/fisiología , Esporas Fúngicas/fisiología , Tiamina/biosíntesis , Beauveria/metabolismo , Pared Celular/fisiología , Proteínas Fúngicas/metabolismo , Tiamina/genética
11.
Yeast ; 37(4): 283-304, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31972058

RESUMEN

Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitaminas/biosíntesis , Biomasa , Biotina/biosíntesis , Inositol/biosíntesis , Niacina/biosíntesis , Ácido Pantoténico/biosíntesis , Piridoxina/biosíntesis , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiamina/biosíntesis
12.
Metab Eng ; 60: 97-109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220614

RESUMEN

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.


Asunto(s)
Biotina/biosíntesis , Proteínas de Escherichia coli/genética , Ingeniería Metabólica/métodos , Tiamina/biosíntesis , Ácido Tióctico/biosíntesis , Factores de Transcripción/genética , Biotina/análogos & derivados , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Proteómica , Sulfurtransferasas/metabolismo
13.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32144105

RESUMEN

The response to iron limitation of the Gram-positive soil bacterium Corynebacterium glutamicum was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of thiC As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of thiC and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in C. glutamicum and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.IMPORTANCE Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium Corynebacterium glutamicum to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/fisiología , Deficiencias de Hierro , ARN Mensajero/metabolismo , Tiamina/biosíntesis , Corynebacterium glutamicum/crecimiento & desarrollo , Proteoma , Transcriptoma
14.
Plant Physiol ; 179(3): 958-968, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30337452

RESUMEN

Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily Caladium bicolor that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Escherichia coli ΔthiG strain to identify a nonsuicidal bacterial THI4 (from Thermovibrio ammonificans) that can function in conditions like those in plant cells. We explored whether C. bicolor synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that C. bicolor flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that C. bicolor THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. T. ammonificans and C. bicolor THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.


Asunto(s)
Tiamina/biosíntesis , Tiazoles/metabolismo , Araceae/enzimología , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Vías Biosintéticas , Escherichia coli/genética , Ingeniería Metabólica/métodos , Methanococcus/enzimología , Plantas/metabolismo
15.
Br J Nutr ; 120(5): 491-499, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986774

RESUMEN

As the co-enzyme of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, thiamine plays a critical role in carbohydrate metabolism in dairy cows. Apart from feedstuff, microbial thiamine synthesis in the rumen is the main source for dairy cows. However, the amount of ruminal thiamine synthesis, which is influenced by dietary N levels and forage to concentrate ratio, varies greatly. Notably, when dairy cows are overfed high-grain diets, subacute ruminal acidosis (SARA) occurs and results in thiamine deficiency. Thiamine deficiency is characterised by decreased ruminal and blood thiamine concentrations and an increased blood thiamine pyrophosphate effect to >45 %. Thiamine deficiency caused by SARA is mainly related to the increased thiamine requirement during high grain feeding, decreased bacterial thiamine synthesis in the rumen, increased thiamine degradation by thiaminase, and decreased thiamine absorption by transporters. Interestingly, thiamine deficiency can be reversed by exogenous thiamine supplementation in the diet. Besides, thiamine supplementation has beneficial effects in dairy cows, such as increased milk and component production and attenuated SARA by improving rumen fermentation, balancing bacterial community and alleviating inflammatory response in the ruminal epithelium. However, there is no conclusive dietary thiamine recommendation for dairy cows, and the impacts of thiamine supplementation on protozoa, solid-attached bacteria, rumen wall-adherent bacteria and nutrient metabolism in dairy cows are still unclear. This knowledge is critical to understand thiamine status and function in dairy cows. Overall, the present review described the current state of knowledge on thiamine nutrition in dairy cows and the major problems that must be addressed in future research.


Asunto(s)
Enfermedades de los Bovinos/terapia , Industria Lechera/métodos , Deficiencia de Tiamina/veterinaria , Tiamina/metabolismo , Acidosis/etiología , Acidosis/veterinaria , Animales , Bacterias/metabolismo , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Grano Comestible/efectos adversos , Femenino , Fermentación , Estado Nutricional , Rumen/metabolismo , Rumen/microbiología , Gastropatías/etiología , Gastropatías/veterinaria , Tiamina/biosíntesis , Tiamina/fisiología , Deficiencia de Tiamina/etiología , Deficiencia de Tiamina/terapia
16.
Parasitology ; 145(8): 1084-1089, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29229007

RESUMEN

Parasites often have reduced genomes as their own genes become redundant when utilizing their host as a source of metabolites, thus losing their own de novo production of metabolites. Primate malaria parasites can synthesize vitamin B1 (thiamine) de novo but rodent malaria and other genome-sequenced apicomplexans cannot, as the three essential genes responsible for this pathway are absent in their genomes. The unique presence of functional thiamine synthesis genes in primate malaria parasites and their sequence similarities to bacterial orthologues, have led to speculations that this pathway was horizontally acquired from bacteria. Here we show that the genes essential for the de novo synthesis of thiamine are found also in avian Plasmodium species. Importantly, they are also present in species phylogenetically basal to all mammalian and avian Plasmodium parasites, i.e. Haemoproteus. Furthermore, we found that these genes are expressed during the blood stage of the avian malaria infection, indicating that this metabolic pathway is actively transcribed. We conclude that the ability to synthesize thiamine is widespread among haemosporidians, with a recent loss in the rodent malaria species.


Asunto(s)
Vías Biosintéticas/genética , Genoma de Protozoos , Haemosporida/genética , Plasmodium/genética , Tiamina/biosíntesis , Animales , Aves/parasitología , Malaria/sangre , Malaria Aviar/parasitología , Filogenia , Plasmodium/fisiología , Primates/parasitología , Roedores/parasitología , Tiamina/genética
17.
Appl Microbiol Biotechnol ; 102(18): 8107-8119, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29987383

RESUMEN

Vitamin B1 (VB1) is an essential coenzyme for carbohydrate metabolism and involved in energy generation in most organisms. In this study, we found that insufficient biosynthesis of VB1 in Clostridium acetobutylicum ATCC 824 is a major limiting factor for efficient acetone-butanol-ethanol (ABE) fermentation. In order to improve the fermentation performance of C. acetobutylicum ATCC 824, the VB1 biosynthesis pathway was strengthened by overexpressing the thiC, thiG, and thiE genes. The engineered strain 824(thiCGE) showed enhanced VB1 and energy synthesis, resulting in better growth, faster sugar consumption, higher solvents production, and lower acids formation than the wild-type strain in both VB1 free and normal P2 medium (1 mg/L). Compared with the wild-type strain, 824(thiCGE) produced 13.0 ± 0.1% or 12.7 ± 1.2% more butanol in VB1 free P2 medium when glucose or xylose was used as the substrate, respectively. When mixed sugar (glucose:xylose = 2:1) was used as the substrate in VB1 free P2 medium, the xylose consumption rate and butanol titer of 824(thiCGE) were 45.8 ± 1.9% and 20.4 ± 0.3% higher than those of the wild-type strain. All these results demonstrated that this metabolic engineering strategy could provide a new and effective way to improve the cellular performance of solventogenic clostridia. In addition, it may have some potential application value in ABE fermentation using simple medium and/or lignocellulosic biomass.


Asunto(s)
Clostridium acetobutylicum/metabolismo , Fermentación , Tiamina/biosíntesis , Butanoles/metabolismo , Clostridium acetobutylicum/genética , Medios de Cultivo , Genes Bacterianos , Glucosa/metabolismo , Ingeniería Metabólica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xilosa/metabolismo
18.
J Bacteriol ; 199(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115546

RESUMEN

Thiamine biosynthesis is commonly regulated by a riboswitch mechanism; however, the enzymatic steps and regulation of this pathway in archaea are poorly understood. Haloferax volcanii, one of the representative archaea, uses a eukaryote-like Thi4 (thiamine thiazole synthase) for the production of the thiazole ring and condenses this ring with a pyrimidine moiety synthesized by an apparent bacterium-like ThiC (2-methyl-4-amino-5-hydroxymethylpyrimidine [HMP] phosphate synthase) branch. Here we found that archaeal Thi4 and ThiC were encoded by leaderless transcripts, ruling out a riboswitch mechanism. Instead, a novel ThiR transcription factor that harbored an N-terminal helix-turn-helix (HTH) DNA binding domain and C-terminal ThiN (TMP synthase) domain was identified. In the presence of thiamine, ThiR was found to repress the expression of thi4 and thiC by a DNA operator sequence that was conserved across archaeal phyla. Despite having a ThiN domain, ThiR was found to be catalytically inactive in compensating for the loss of ThiE (TMP synthase) function. In contrast, bifunctional ThiDN, in which the ThiN domain is fused to an N-terminal ThiD (HMP/HMP phosphate [HMP-P] kinase) domain, was found to be interchangeable for ThiE function and, thus, active in thiamine biosynthesis. A conserved Met residue of an extended α-helix near the active-site His of the ThiN domain was found to be important for ThiDN catalytic activity, whereas the corresponding Met residue was absent and the α-helix was shorter in ThiR homologs. Thus, we provide new insight into residues that distinguish catalytic from noncatalytic ThiN domains and reveal that thiamine biosynthesis in archaea is regulated by a transcriptional repressor, ThiR, and not by a riboswitch.IMPORTANCE Thiamine pyrophosphate (TPP) is a cofactor needed for the enzymatic activity of many cellular processes, including central metabolism. In archaea, thiamine biosynthesis is an apparent chimera of eukaryote- and bacterium-type pathways that is not well defined at the level of enzymatic steps or regulatory mechanisms. Here we find that ThiN is a versatile domain of transcriptional repressors and catalytic enzymes of thiamine biosynthesis in archaea. Our study provides new insight into residues that distinguish catalytic from noncatalytic ThiN domains and reveals that archaeal thiamine biosynthesis is regulated by a ThiN domain transcriptional repressor, ThiR, and not by a riboswitch.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Haloferax volcanii/metabolismo , Tiamina/biosíntesis , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Proteínas Arqueales/genética , ADN de Archaea/genética , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Purinas/química , Purinas/metabolismo , Tiamina/química
19.
Plant Physiol ; 172(3): 2033-2043, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27702844

RESUMEN

Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus.


Asunto(s)
Vías Biosintéticas/genética , Lotus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Tiamina/biosíntesis , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas , Lotus/microbiología , Mutación/genética , Micorrizas/efectos de los fármacos , Micorrizas/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Plastidios/metabolismo , Rhizobium/efectos de los fármacos , Rhizobium/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Fracciones Subcelulares/metabolismo , Simbiosis , Tiamina/farmacología
20.
J Exp Bot ; 68(13): 3351-3363, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859374

RESUMEN

Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms.


Asunto(s)
Manihot/genética , Tiamina/genética , Tiamina/metabolismo , Cromatografía Líquida de Alta Presión , Manihot/metabolismo , Especificidad de Órganos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tiamina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA