Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(6): 1042-1051, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37540118

RESUMEN

Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.


Asunto(s)
Anticuerpos , Complejo Mayor de Histocompatibilidad , Tiburones , Tiburones/genética , Tiburones/metabolismo , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/metabolismo , Inmunoglobulina G/genética , Filogenia , Evolución Molecular , Secuencia de Aminoácidos , Alineación de Secuencia , Hígado/metabolismo , Expresión Génica , Mamíferos/genética , Especificidad de Órganos
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36971115

RESUMEN

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks. The number of putative OR, TAAR, and V1R/ORA receptors is very low and stable, whereas the number of putative V2R/OlfC receptors is higher and much more dynamic. In the catshark Scyliorhinus canicula, we show that many V2R/OlfC receptors are expressed in the olfactory epithelium in the sparsely distributed pattern characteristic for olfactory receptors. In contrast, the other three vertebrate olfactory receptor families are either not expressed (OR) or only represented with a single receptor (V1R/ORA and TAAR). The complete overlap of markers of microvillous olfactory sensory neurons with pan-neuronal marker HuC in the olfactory organ suggests the same cell-type specificity of V2R/OlfC expression as for bony fishes, that is, in microvillous neurons. The relatively low number of olfactory receptors in cartilaginous fishes compared with bony fishes could be the result of an ancient and constant selection in favor of a high olfactory sensitivity at the expense of a high discrimination capability.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Tiburones , Órgano Vomeronasal , Animales , Receptores Odorantes/metabolismo , Olfato/fisiología , Órgano Vomeronasal/metabolismo , Tiburones/genética , Tiburones/metabolismo , Filogenia , Vertebrados/genética , Peces/genética
3.
Anal Chem ; 96(10): 4242-4250, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408370

RESUMEN

Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.


Asunto(s)
Tiburones , Anticuerpos de Dominio Único , Animales , Humanos , alfa-Fetoproteínas , Tiburones/metabolismo , Anticuerpos , Suero/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Antígenos
4.
Environ Res ; 252(Pt 3): 118979, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685303

RESUMEN

Shark is a seafood commodity that is a good source of minerals and accumulates heavy metals and trace elements through biomagnification, which can pose health risk if taken above the permissible limit. A study was conducted on commonly landed eleven shark species (Scoliodon laticaudus, Rhizopriodon oligolinx, Sphyrna lewini (CR), Carcharhinus macloti, Carcharinus limbatus, Carcharhinus amblyrhynchoides, Carcharhinus sorrah, Carcharinus falciformes(VU), Glaucostegus granulatus, Chiloscyllium arabicum, Loxodon macrorhinus) and analyzed for their heavy metal content, Hazard Index, Total Hazard Quotient, Metal Pollution Index, and also calculated the health risk associated with the consumption. Most of the heavy metals and trace minerals were found to be within the acceptable limit. The Targeted Hazard Quotient (THQ) and the Hazard Index (HI) of all the species except two were less than 1 (HI ≤ 1.0). The Metal Pollution Index (MPI) is showing either no impact or very low contamination. An overall study on hazard identification and health risk characterization in terms of heavy metals shows contamination of some heavy metals in sharks, but there is no potential human health risk associated with consumption.


Asunto(s)
Metales Pesados , Tiburones , Contaminantes Químicos del Agua , Animales , Metales Pesados/análisis , Tiburones/metabolismo , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos , Oligoelementos/análisis , Monitoreo del Ambiente , Minerales/análisis
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892415

RESUMEN

Elasmobranchs have an ancestral reproductive system, which offers insights into vertebrate reproductive evolution. Despite their unchanged design over 400 million years, they evolved complex mechanisms ensuring reproductive success. However, human activities induced a significant decline in elasmobranch populations worldwide. In the Mediterranean basin, the smooth-hound shark (Mustelus mustelus) is one of the species that are considered vulnerable to human activities. Conservation efforts necessitate a thorough understanding of its reproductive strategy. This study focused on mature male specimens of smooth-hound sharks that were captured in the Adriatic area and successively analyzed to provide, for the first time, a histologically detailed description of testicular development in the species. Seven phases of the spermatogenesis process were identified, along with the macromolecular characterization of cells obtained using Fourier-transform infrared imaging. Histological analysis showed structural and cellular features similar to those documented in the spermatocysts of other elasmobranchs. The examination of the evolution and migration of both germinative and Sertoli cells at each phase revealed their close connection. Furthermore, different expression levels of lipids, proteins, and phosphates (DNA) at each spermatogenesis stage were observed. This research provided new information on spermatogenesis in the common smooth-hound shark, which is crucial for conservation efforts against population decline and anthropogenic pressures.


Asunto(s)
Tiburones , Espermatogénesis , Testículo , Animales , Tiburones/metabolismo , Masculino , Testículo/citología , Testículo/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/citología
6.
Exp Eye Res ; 226: 109333, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436570

RESUMEN

Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.


Asunto(s)
Tiburones , Animales , Tiburones/genética , Tiburones/metabolismo , Morfolinos/genética , Morfolinos/farmacología , Morfolinos/metabolismo , Técnicas de Silenciamiento del Gen , Antígeno Nuclear de Célula en Proliferación/genética , Retina/metabolismo
7.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493039

RESUMEN

The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.


Asunto(s)
Metabolismo Basal , Tiburones , Animales , Tiburones/metabolismo , Oxígeno/metabolismo , California
8.
J Exp Biol ; 226(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36576038

RESUMEN

Haemoglobin (Hb)-O2 binding affinity typically decreases with increasing temperature, but several species of ectothermic and regionally endothermic fishes exhibit reduced Hb thermal sensitivity. Regionally endothermic sharks, including the common thresher shark (Alopias vulpinus) and lamnid sharks such as the shortfin mako shark (Isurus oxyrinchus), can maintain select tissues and organs warmer than ambient temperature by retaining metabolic heat with vascular heat exchangers. In the ectothermic bigeye thresher shark (Alopias superciliosus), diurnal movements above and below the thermocline subject the tissues, including the blood, to a wide range of operating temperatures. Therefore, blood-O2 transport must occur across internal temperature gradients in regionally endothermic species, and over the range of environmental temperatures encountered by the ectothermic bigeye thresher shark. While previous studies have shown temperature-independent Hb-O2 affinity in lamnid sharks, including shortfin mako, the Hb-O2 affinity of the common and bigeye thresher sharks is unknown. Therefore, we examined the effect of temperature on whole-blood Hb-O2 affinity in common thresher shark and bigeye thresher shark. For comparison, analyses were also conducted on the shortfin mako shark and two ectothermic species, blue shark (Prionace glauca) and spiny dogfish (Squalus acanthias). Blood-O2 binding affinity was temperature independent for common thresher shark and shortfin mako shark, which should prevent internal temperature gradients from negatively affecting blood-O2 transport. Blue shark and spiny dogfish blood-O2 affinity decreased with increasing temperature, as expected, but bigeye thresher shark blood exhibited both a reduced temperature dependence and a high Hb-O2 affinity, which likely prevents large changes in environment temperature and low environmental oxygen from affecting O2 uptake.


Asunto(s)
Tiburones , Animales , Temperatura , Tiburones/metabolismo , Oxígeno/metabolismo , Regulación de la Temperatura Corporal , Transporte Biológico
9.
Biol Lett ; 19(10): 20230344, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817574

RESUMEN

Anoxia/re-oxygenation (AR) results in elevated unchecked oxidative stress and mediates irreversible damage within the brain for most vertebrates. Succinate accumulation within mitochondria of the ischaemic brain appears to increase the production of reactive oxygen species (ROS) upon re-oxygenation. Two closely related elasmobranchs, the epaulette shark (Hemiscyllium ocellatum) and the grey carpet shark (Chiloscyllium punctatum) repeatedly experience near anoxia and re-oxygenation in their habitats and have adapted to survive AR at tropical temperatures without significant brain injuries. However, these anoxia-tolerant species display contrasting strategies to survive AR, with only H. ocellatum having the capacity to supress metabolism and H. ocellatum mitochondria the capacity to depress succinate oxidation post-AR. We measured oxygen consumption alongside ROS production mediated by elevated succinate in mitochondria of permeabilized cerebellum from both shark species. Although mitochondrial respiration remained similar for both species, the ROS production in H. ocellatum was half that of C. punctatum in phosphorylating and non-phosphorylating mitochondria. Maximum ROS production in H. ocellatum was mediated by succinate loads 10-fold higher than in C. punctatum mitochondria. The contrasting survival strategies of anoxia-tolerant sharks reveal the significance of mitigating ROS production under elevated succinate load during AR, shedding light on potential mechanisms to mitigate brain injury.


Asunto(s)
Tiburones , Animales , Tiburones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo , Pisos y Cubiertas de Piso , Hipoxia/metabolismo , Oxígeno/metabolismo
10.
Environ Sci Technol ; 57(34): 12620-12631, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37582282

RESUMEN

As human activities release increasingly more fossil fuel-derived emissions directly into the atmosphere, terrestrial, aquatic, or marine ecosystems, the biomagnification and bioaccumulation of toxic metals in seafood is an ever more pressing concern. As apex predators, sharks are particularly susceptible to biomagnification and bioaccumulation. The consumption of shark fin is frequent throughout Asia, and their ingestion represents a pathway through which human exposure to potentially unsafe levels of toxic metals can occur. Shark fins processed for sale are difficult, if not impossible to identify to the species level by visual methods alone. Here, we DNA-barcoded 208 dried and processed fins and in doing so, identified fourteen species of shark. Using these identifications, we determined the habitat of the shark that the fin came from and the concentrations of four toxic metals (mercury, arsenic, cadmium, and lead) in all 208 samples via inductively coupled plasma mass spectrometry. We further analyzed these concentrations by habitat type, either coastal or pelagic, and show that toxic metal concentrations vary significantly between species and habitat. Pelagic species have significantly higher concentrations of mercury in comparison to coastal species, whereas coastal species have significantly higher concentrations of arsenic. No significant differences in cadmium or lead concentrations were detected between pelagic or coastal species. Our results indicate that a number of analyzed samples contain toxic metal concentrations above safe human consumption levels.


Asunto(s)
Arsénico , Mercurio , Tiburones , Animales , Humanos , Plomo/metabolismo , Cadmio , Tiburones/metabolismo , Ecosistema , Mercurio/análisis , Alimentos Marinos/análisis
11.
Gen Comp Endocrinol ; 342: 114342, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454980

RESUMEN

The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.


Asunto(s)
Tiburones , Squalus acanthias , Animales , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Squalus acanthias/metabolismo , Tiburones/metabolismo , Hormona Adrenocorticotrópica/farmacología , Secuencia de Aminoácidos , Peces/metabolismo
12.
Gen Comp Endocrinol ; 338: 114278, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996927

RESUMEN

To understand the mechanism for activation of the melanocortin-2 receptor (Mc2r) of the elasmobranch, Rhincodon typus (whale shark; ws), wsmc2r was co-expressed with wsmrap1 in CHO cells, and the transfected cells were stimulated with alanine-substituted analogs of ACTH(1-24) at the "message" motif (H6F7R8W9) and the "address" motif (K15K16R17R18P19). Complete alanine substitution of the H6F7R8W9 motif blocked activation, whereas single alanine substitution at this motif indicated the following hierarchy of position importance for activation: W9 > R8, and substitution at F7 and H6 had no effect on activation. The same analysis was done on a representative bony vertebrate Mc2r ortholog (Amia calva; bowfin; bf) and the order of position importance for activation was W9 > R8 = F7, (alanine substitution at H6 was negligible). Complete alanine substitution at the K15K16R17R18P19 motif resulted in distinct outcomes for wsMc2r and bfMc2r. For bfMc2r, this analog blocked activation-an outcome typical for bony vertebrate Mc2r orthologs. For wsMc2r, this analog resulted in a shift in sensitivity to stimulation of the analog as compared to ACTH(1-24) by two orders of magnitude, but the dose response curve did reach saturation. To evaluate whether the EC2 domain of wsMc2r plays a role in activation, a chimeric wsMc2r was made in which the EC2 domain was replaced with the EC2 domain from a melanocortin receptor that does not interact with Mrap1 (i.e., Xenopus tropicalis Mc1r). This substitution did not negatively impact the activation of the chimeric receptor. In addition, alanine substitution at a putative activation motif in the N-terminal of wsMrap1 did not affect the sensitivity of wsMc2r to stimulation by ACTH(1-24). Collectively, these observations suggest that wsMc2r may only have a HFRW binding site for melanocortin-related ligand which would explain how wsMc2r could be activated by either ACTH or MSH-sized ligands.


Asunto(s)
Oncorhynchus mykiss , Tiburones , Cricetinae , Animales , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Cricetulus , Receptores de Melanocortina/metabolismo , Tiburones/genética , Tiburones/metabolismo , Ligandos , Oncorhynchus mykiss/metabolismo , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Alanina/metabolismo
13.
Mar Drugs ; 21(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233454

RESUMEN

Numerous studies have shown that type II collagen (CII) has a potential role in the treatment of rheumatoid arthritis. However, most of the current studies have used terrestrial animal cartilage as a source of CII extraction, with fewer studies involving marine organisms. Based on this background, collagen (BSCII) was isolated from blue shark (Prionace glauca) cartilage by pepsin hydrolysis and its biochemical properties including protein pattern, total sugar content, microstructure, amino acid composition, spectral characteristics and thermal stability were further investigated in the present study. The SDS-PAGE results confirmed the typical characteristic of CII, comprising three identical α1 chains and its dimeric ß chain. BSCII had the fibrous microstructure typical of collagen and an amino acid composition represented by high glycine content. BSCII had the typical UV and FTIR spectral characteristics of collagen. Further analysis revealed that BSCII had a high purity, while its secondary structure comprised 26.98% of ß-sheet, 35.60% of ß-turn, 37.41% of the random coil and no α-helix. CD spectra showed the triple helical structure of BSCII. The total sugar content, denaturation temperature and melting temperature of BSCII were (4.20 ± 0.03)%, 42 °C and 49 °C, respectively. SEM and AFM images confirmed a fibrillar and porous structure of collagen and denser fibrous bundles formed at higher concentrations. Overall, CII was successfully extracted from blue shark cartilage in the present study, and its molecular structure was intact. Therefore, blue shark cartilage could serve as a potential source for CII extraction with applications in biomedicine.


Asunto(s)
Colágeno , Tiburones , Animales , Colágeno Tipo II/análisis , Colágeno/química , Aminoácidos/metabolismo , Cartílago/química , Tiburones/metabolismo , Azúcares/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(34): 20662-20671, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32753383

RESUMEN

The endangered whale shark (Rhincodon typus) is the largest fish on Earth and a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 83 animals and yeast. We examined the scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic traits also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: Guanine and cytosine (GC) content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to introns being highly enriched in repetitive elements such as CR1-like long interspersed nuclear elements, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark genome also has the second slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan and showed that the whale shark is a promising model for studies of neural architecture and lifespan.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño Corporal/fisiología , Tiburones/genética , Animales , Secuencia de Bases/genética , Tamaño Corporal/genética , Genoma/genética , Genómica/métodos , Longevidad/genética , Tiburones/metabolismo , Temperatura
15.
J Fish Biol ; 103(6): 1357-1373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632330

RESUMEN

River sharks (Glyphis spp.) and some sawfishes (Pristidae) inhabit riverine environments, although their long-term habitat use patterns are poorly known. We investigated the diadromous movements of the northern river shark (Glyphis garricki), speartooth shark (Glyphis glyphis), narrow sawfish (Anoxypristis cuspidata), and largetooth sawfish (Pristis pristis) using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on vertebrae to recover elemental ratios over each individual's lifetime. We also measured elemental ratios for the bull shark (Carcharhinus leucas) and a range of inshore and offshore stenohaline marine species to assist in interpretation of results. Barium (Ba) was found to be an effective indicator of freshwater use, whereas lithium (Li) and strontium (Sr) were effective indicators of marine water use. The relationships between Ba and Li and Ba and Sr were negatively correlated, whereas the relationship between Li and Sr was positively correlated. Both river shark species had elemental signatures indicative of prolonged use of upper-estuarine environments, whereas adults appear to mainly use lower-estuarine environments rather than marine environments. Decreases in Li:Ba and Sr:Ba at the end of the prenatal growth zone of P. pristis samples indicated that parturition likely occurs in fresh water. There was limited evidence of prolonged riverine habitat use for A. cuspidata. The results of this study support elemental-environment relationships observed in teleost otoliths and indicate that in situ LA-ICP-MS elemental characterization is applicable to a wide range of elasmobranch species as a discriminator for use and movement across salinity gradients. A greater understanding of processes that lead to element incorporation in vertebrae, and relative concentrations in vertebrae with respect to the ambient environment, will improve the applicability of elemental analysis to understand movements across the life history of elasmobranchs into the future.


Asunto(s)
Tiburones , Rajidae , Animales , Tiburones/metabolismo , Ecosistema , Agua Dulce/química , Rajidae/metabolismo , Estroncio/análisis , Columna Vertebral/química
16.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298062

RESUMEN

Marine collagen (MC) has recently attracted more attention in tissue engineering as a biomaterial substitute due to its significant role in cellular signaling mechanisms, especially in mesenchymal stem cells (MSCs). However, the actual signaling mechanism of MC in MSC growth, which is highly influenced by their molecular pattern, is poorly understood. Hence, we investigated the integrin receptors (α1ß1, α2ß1, α10ß1, and α11ß1) binding mechanism and proliferation of MCs (blacktip reef shark collagen (BSC) and blue shark collagen (SC)) compared to bovine collagen (BC) on MSCs behavior through functionalized collagen molecule probing for the first time. The results showed that BSC and SC had higher proliferation rates and accelerated scratch wound healing by increasing migratory rates of MSCs. Cell adhesion and spreading results demonstrated that MC had a better capacity to anchor MSCs and maintain cell morphology than controls. Living cell observations showed that BSC was gradually assembled by cells into the ECM network within 24 h. Interestingly, qRT-PCR and ELISA revealed that the proliferative effect of MC was triggered by interacting with specific integrin receptors such as α2ß1, α10ß1, and α11ß1 of MSCs. Accordingly, BSC accelerated MSCs' growth, adhesion, shape, and spreading by interacting with specific integrin subunits (α2 and ß1) and thereby triggering further signaling cascade mechanisms.


Asunto(s)
Células Madre Mesenquimatosas , Tiburones , Animales , Bovinos , Ratones , Integrinas/metabolismo , Colágeno/metabolismo , Adhesión Celular , Células Madre Mesenquimatosas/metabolismo , Tiburones/metabolismo
17.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35258589

RESUMEN

Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean (±s.d.) FMR of 21.67±2.30 mg O2 h-1 kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mg O2 h-1 kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224 kg) requires a maintenance ration of 61-193 g of fish or marine mammal prey daily. As Greenland sharks are a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates, suggest they require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, which is essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.


Asunto(s)
Tiburones , Animales , Regiones Árticas , Cazón , Explotaciones Pesqueras , Cadena Alimentaria , Groenlandia , Mamíferos , Tiburones/metabolismo
18.
Oecologia ; 199(2): 313-328, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35718810

RESUMEN

Nitrogen isotope (δ15N) analysis of bulk tissues and individual amino acids (AA) can be used to assess how consumers maintain nitrogen balance with broad implications for predicting individual fitness. For elasmobranchs, a ureotelic taxa thought to be constantly nitrogen limited, the isotopic effects associated with nitrogen-demanding events such as prolonged gestation remain unknown. Given the linkages between nitrogen isotope variation and consumer nitrogen balance, we used AA δ15N analysis of muscle and liver tissue collected from female bonnethead sharks (Sphyrna tiburo, n = 16) and their embryos (n = 14) to explore how nitrogen balance may vary across gestation. Gestational stage was a strong predictor of bulk tissue and AA δ15N values in pregnant shark tissues, decreasing as individuals neared parturition. This trend was observed in trophic (e.g., Glx, Ala, Val), source (e.g., Lys), and physiological (e.g., Gly) AAs. Several potential mechanisms may explain these results including nitrogen conservation, scavenging, and bacterially mediated breakdown of urea to free ammonia that is used to synthesize AAs. We observed contrasting patterns of isotopic discrimination in embryo tissues, which generally became enriched in 15N throughout development. This was attributed to greater excretion of nitrogenous waste in more developed embryos, and the role of physiologically sensitive AAs (i.e., Gly and Ser) to molecular processes such as nucleotide synthesis. These findings underscore how AA isotopes can quantify shifts in nitrogen balance, providing unequivocal evidence for the role of physiological condition in driving δ15N variation in both bulk tissues and individual AAs.


Asunto(s)
Tiburones , Aminoácidos , Animales , Isótopos de Carbono , Femenino , Nitrógeno , Isótopos de Nitrógeno , Embarazo , Tiburones/metabolismo
19.
BMC Vet Res ; 18(1): 380, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309677

RESUMEN

BACKGROUND: This study determined plasma protein electrophoresis (PPE) reference intervals in two elasmobranch species: the undulate skate (Raja undulata) and the nursehound shark (Scyliorhinus stellaris), using a reference population of 48 undulate skates (27 males, 21 females) and 62 nursehounds (32 males, 30 females), considered to be clinically healthy. Plasma samples were analyzed using capillary zone electrophoresis (CZE). RESULTS: The undulate skate electrophoretogram resembled those previously reported in other batoids and could be divided into seven consistent fractions. No statistically significant differences were detected between sexes and developmental stages. The nursehound electrophoretogram was similar to that previously described in other shark species and could be divided into eight consistent fractions. Fraction 5% was significantly higher in juvenile nursehounds when compared to adults, while fraction 6 concentration and percentage were significantly higher in adults. Fraction 4% was higher in males than in females. Albumin band was not detected, and pre-albumin was negligible in both studied species. Alpha-globulins were predominant in the undulate skate, while beta-globulins were predominant in nursehounds. Statistically significant differences were found in all electrophoretogram fraction percentages and concentrations between the two species. CONCLUSION: To the authors knowledge, this is the first study reporting PPE values in undulate skates and nursehounds, and the first study using CZE in elasmobranch plasma. These findings can serve as a primary reference for health monitoring in both species and will add to the limited data available on PPE in elasmobranchs.


Asunto(s)
Tiburones , Rajidae , Masculino , Femenino , Humanos , Animales , Rajidae/metabolismo , Tiburones/metabolismo , Valores de Referencia , Electroforesis/veterinaria , Proteínas Sanguíneas/análisis , Albúminas/metabolismo
20.
Mar Drugs ; 20(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35621957

RESUMEN

Tumor necrosis factor α (TNFα), an important clinical testing factor and drug target, can trigger serious autoimmune diseases and inflammation. Thus, the TNFα antibodies have great potential application in diagnostics and therapy fields. The variable binding domain of IgNAR (VNAR), the shark single domain antibody, has some excellent advantages in terms of size, solubility, and thermal and chemical stability, making them an ideal alternative to conventional antibodies. This study aims to obtain VNARs that are specific for mouse TNF (mTNF) from whitespotted bamboosharks. After immunization of whitespotted bamboosharks, the peripheral blood leukocytes (PBLs) were isolated from the sharks, then the VNAR phage display library was constructed. Through phage display panning against mTNFα, positive clones were validated through ELISA assay. The affinity of the VNAR and mTNFα was measured using ELISA and Bio-Layer Interferometry. The binding affinity of 3B11 VNAR reached 16.7 nM. Interestingly, one new type of VNAR targeting mTNF was identified that does not belong to any known VNAR type. To understand the binding mechanism of VNARs to mTNFα, the models of VNARs-mTNFα complexes were predicted by computational modeling combining HawkDock and RosettaDock. Our results showed that four VNARs' epitopes overlapped in part with that of mTNFR. Furthermore, the ELISA assay shows that the 3B11 potently inhibited mTNFα binding to mTNFR. This study may provide the basis for the TNFα blockers and diagnostics applications.


Asunto(s)
Tiburones , Anticuerpos de Dominio Único , Factor de Necrosis Tumoral alfa , Animales , Anticuerpos , Ratones , Tiburones/metabolismo , Anticuerpos de Dominio Único/aislamiento & purificación , Anticuerpos de Dominio Único/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA