Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 296: 100058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33172892

RESUMEN

DNA methylation and histone tail modifications are interrelated mechanisms involved in a wide range of biological processes, and disruption of this crosstalk is linked to diseases such as acute myeloid leukemia. In addition, DNA methyltransferase 3A (DNMT3A) activity is modulated by several regulatory proteins, including p53 and thymine DNA glycosylase (TDG). However, the relative role of histone tails and regulatory proteins in the simultaneous coordination of DNMT3A activity remains obscure. We observed that DNMT3A binds H3 tails and p53 or TDG at distinct allosteric sites to form DNMT3A-H3 tail-p53 or -TDG multiprotein complexes. Functional characterization of DNMT3A-H3 tail-p53 or -TDG complexes on human-derived synthetic histone H3 tails, mononucleosomes, or polynucleosomes shows p53 and TDG play dominant roles in the modulation of DNMT3A activity. Intriguingly, this dominance occurs even when DNMT3A is actively methylating nucleosome substrates. The activity of histone modifiers is influenced by their ability to sense modifications on histone tails within the same nucleosome or histone tails on neighboring nucleosomes. In contrast, we show here that DNMT3A acts on DNA within a single nucleosome, on nucleosomal DNA within adjacent nucleosomes, and DNA not associated with the DNMT3A-nucleosome complex. Our findings have direct bearing on how the histone code drives changes in DNA methylation and highlight the complex interplay between histone tails, epigenetic enzymes, and modulators of enzymatic activity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Nucleosomas/enzimología , Timina ADN Glicosilasa/fisiología , Proteína p53 Supresora de Tumor/fisiología , Sitio Alostérico , ADN/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Epigénesis Genética , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
2.
Mol Cell ; 55(4): 604-14, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25087872

RESUMEN

DNA methylation is a dynamic and reversible process that governs gene expression during development and disease. Several examples of active DNA demethylation have been documented, involving genome-wide and gene-specific DNA demethylation. How demethylating enzymes are targeted to specific genomic loci remains largely unknown. We show that an antisense lncRNA, termed TARID (for TCF21 antisense RNA inducing demethylation), activates TCF21 expression by inducing promoter demethylation. TARID interacts with both the TCF21 promoter and GADD45A (growth arrest and DNA-damage-inducible, alpha), a regulator of DNA demethylation. GADD45A in turn recruits thymine-DNA glycosylase for base excision repair-mediated demethylation involving oxidation of 5-methylcytosine to 5-hydroxymethylcytosine in the TCF21 promoter by ten-eleven translocation methylcytosine dioxygenase proteins. The results reveal a function of lncRNAs, serving as a genomic address label for GADD45A-mediated demethylation of specific target genes.


Asunto(s)
5-Metilcitosina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/metabolismo , Citosina/análogos & derivados , Metilación de ADN/fisiología , Neoplasias/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/fisiología , Timina ADN Glicosilasa/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Islas de CpG/fisiología , Citosina/metabolismo , Metilación de ADN/genética , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Células HEK293 , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/fisiología , ARN Largo no Codificante/genética
3.
Bioessays ; 39(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28098352

RESUMEN

DNA methylation plays important roles in development and disease. Yet, only recently has the dynamic nature of this epigenetic mark via oxidation and DNA repair-mediated demethylation been recognized. A major conceptual challenge to the model that DNA methylation is reversible is the risk of genomic instability, which may come with widespread DNA repair activity. Here, we focus on recent advances in mechanisms of TET-TDG mediated demethylation and cellular strategies that avoid genomic instability. We highlight the recently discovered involvement of NEIL DNA glycosylases, which cooperate with TDG in oxidative demethylation to accelerate substrate turnover and promote the organized handover of harmful repair intermediates to maintain genome stability.


Asunto(s)
5-Metilcitosina/metabolismo , Reparación del ADN , Animales , Metilación de ADN , Epigénesis Genética , Humanos , Timina ADN Glicosilasa/fisiología , Vertebrados/genética
4.
Nucleic Acids Res ; 42(13): 8592-604, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948610

RESUMEN

The discovery of hydroxymethyl-, formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes.


Asunto(s)
ADN Glicosilasas/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica , Timina ADN Glicosilasa/metabolismo , Animales , Células Cultivadas , Cricetinae , Citosina/metabolismo , Reparación del ADN , Células Madre Embrionarias/metabolismo , Endodesoxirribonucleasas/fisiología , Silenciador del Gen , Células HEK293 , Humanos , Ratones , Oxidación-Reducción , Timina ADN Glicosilasa/fisiología
5.
Mol Cell Biochem ; 333(1-2): 221-32, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19652917

RESUMEN

The T:G mismatch specific DNA glycosylase (TDG) is known as an important enzyme in repairing damaged DNA. Recent studies also showed that TDG interacts with a p160 protein, steroid receptor coactivator 1 or nuclear receptor coactivator 1 (SRC1), and is involved in transcriptional activation of the estrogen receptor. However, whether other members of the p160 family are also involved in TDG-interaction and signal transduction regulation remains to be seen. In this study, we employed the mammalian two-hybrid system to investigate the interaction between TDG and another member of the p160 family, nuclear receptor coactivator 3 (NCoA-3). We found that a DXXD motif from aa 294-297 within TDG was responsible for the TDG-NCoA-3 interaction, we also found that a LLXXXL motif (X means any amino acid) from aa 1029-1037 (LLRNSL) and a merged LLXXL motif (LLDQLHTLL) from aa 1053-1061 in NCoA-3 were important for the TDG-NCoA-3 interactions. Mutation of the two aspartic acids (aa 294 and 297) into two alanines in TDG significantly affected the interaction and subsequent transcriptional activation of several steroid hormone receptors including, estrogen-, androgen- and progesterone- receptors in Huh7 cells. We also identified that mutations of NCoA-3 at either leucines 1029-1030 or 1053-1054 (replaced by alanines) also reduced the interaction activity between TDG and NCoA1. These data indicated that the TDG-NCoA-3 interaction is important for broad range activation of steroid hormone nuclear receptors, and may also contribute significantly to further understanding of TDG-related nuclear receptor regulation.


Asunto(s)
Coactivador 3 de Receptor Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Timina ADN Glicosilasa/metabolismo , Activación Transcripcional , Secuencias de Aminoácidos , Línea Celular Tumoral , Humanos , Mutagénesis Sitio-Dirigida , Coactivador 3 de Receptor Nuclear/fisiología , Mapeo de Interacción de Proteínas , Timina ADN Glicosilasa/fisiología , Técnicas del Sistema de Dos Híbridos
6.
Mol Cell Biol ; 27(1): 229-43, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17060459

RESUMEN

Previous studies have demonstrated that the base excision repair enzyme thymine DNA glycosylase (TDG) mediates recruitment of histone acetyltransferases CREB-binding protein (CBP) and p300 to DNA, suggesting a plausible role for these factors in TDG-mediated repair. Furthermore, TDG was found to potentiate CBP/p300-dependent transcription and serve as a substrate for CBP/p300 acetylation. Here, we show that the small ubiquitin-like modifier 1 (SUMO-1) protein binding activity of TDG is essential for activation of CBP and localization to promyelocytic leukemia protein oncogenic domains (PODs). SUMO-1 binding is mediated by two distinct amino- and carboxy-terminal motifs (residues 144 to 148 and 319 to 322) that are negatively regulated by DNA binding via an amino-terminal hydrophilic region (residues 1 to 121). TDG is also posttranslationally modified by covalent conjugation of SUMO-1 (sumoylation) to lysine 341. Interestingly, we found that sumoylation of TDG blocks interaction with CBP and prevents TDG acetylation in vitro. Furthermore, sumoylation effectively abrogates intermolecular SUMO-1 binding and a sumoylation-deficient mutant accumulates in PODs, suggesting that sumoylation negatively regulates translocation to these nuclear structures. These findings suggest that TDG sumoylation promotes intramolecular interactions with amino- and carboxy-terminal SUMO-1 binding motifs that dramatically alter the biochemical properties and subcellular localization of TDG.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Timina ADN Glicosilasa/biosíntesis , Timina ADN Glicosilasa/fisiología , Factores de Transcripción p300-CBP/metabolismo , Sitio Alostérico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Reparación del ADN , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteína SUMO-1 , Homología de Secuencia de Aminoácido , Transcripción Genética
7.
Cell Rep ; 31(1): 107475, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268085

RESUMEN

Thymine DNA glycosylase (TDG) is a nuclear receptor coactivator that plays an essential role in the maintenance of epigenetic stability in cells. Here, we demonstrate that the conditional deletion of TDG in adult mice results in a male-predominant onset of hepatocellular carcinoma (HCC). TDG loss leads to a prediabetic state, as well as bile acid (BA) accumulation in the liver and serum of male mice. Consistent with these data, TDG deletion led to dysregulation of the farnesoid X receptor (FXR) and small heterodimer partner (SHP) regulatory cascade in the liver. FXR and SHP are tumor suppressors of HCC and play an essential role in BA and glucose homeostasis. These results indicate that TDG functions as a tumor suppressor of HCC by regulating a transcriptional program that protects against the development of glucose intolerance and BA accumulation in the liver.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Carcinoma Hepatocelular/fisiopatología , Timina ADN Glicosilasa/metabolismo , Animales , Ácidos y Sales Biliares/genética , Carcinoma Hepatocelular/metabolismo , Femenino , Glucosa/metabolismo , Células Hep G2 , Homeostasis , Humanos , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo , Timina ADN Glicosilasa/fisiología
8.
DNA Repair (Amst) ; 7(12): 1962-72, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18789404

RESUMEN

Thymine DNA glycosylases (TDG) in eukaryotic organisms are known for their double-stranded glycosylase activity on guanine/uracil (G/U) base pairs. Schizosaccharomyces pombe (Spo) TDG is a member of the MUG/TDG family that belongs to a uracil DNA glycosylase superfamily. This work investigates the DNA repair activity of Spo TDG on all four deaminated bases: xanthine (X) and oxanine (O) from guanine, hypoxanthine (I) from adenine, and uracil from cytosine. Unexpectedly, Spo TDG exhibits glycosylase activity on all deaminated bases in both double-stranded and single-stranded DNA in the descending order of X>I>U>>O. In comparison, human TDG only excises deaminated bases from G/U and, to a much lower extent, A/U and G/I base pairs. Amino acid substitutions in motifs 1 and 2 of Spo TDG show a significant impact on deaminated base repair activity. The overall mutational effects are characterized by a loss of glycosylase activity on oxanine in all five mutants. L157I in motif 1 and G288M in motif 2 retain xanthine DNA glycosylase (XDG) activity but reduce excision of hypoxanthine and uracil, in particular in C/I, single-stranded hypoxanthine (ss-I), A/U, and single-stranded uracil (ss-U). A proline substitution at I289 in motif 2 causes a significant reduction in XDG activity and a loss of activity on C/I, ss-I, A/U, C/U, G/U, and ss-U. S291G only retains reduced activity on T/I and G/I base pairs. S163A can still excise hypoxanthine and uracil in mismatched base pairs but loses XDG activity, making it the closest mutant, functionally, to human TDG. The relationship among amino acid substitutions, binding affinity and base recognition is discussed.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , Schizosaccharomyces/enzimología , Timina ADN Glicosilasa/fisiología , Uracilo/química , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Cadena Simple/genética , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nucleósidos de Purina/química , Nucleósidos de Purina/metabolismo , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Uracilo/metabolismo , Xantina/química , Xantina/metabolismo
9.
DNA Repair (Amst) ; 3(12): 1579-90, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15474419

RESUMEN

The 3,N(4)-ethenocytosine (epsilon C) residue might have biological role in vivo since it is recognized and efficiently excised in vitro by the E. coli mismatch-specific uracil-DNA glycosylase (MUG) and the human thymine-DNA glycosylase (hTDG). In the present work we have generated mug defective mutant of E. coli by insertion of a kanamycin cassette to assess the role of MUG in vivo. We show that human TDG complements the enzymatic activity of MUG when expressed in a mug mutant. The epsilon C-DNA glycosylase defective strain did not exhibit spontaneous mutator phenotype and did not show unusual sensitivity to any of the following DNA damaging treatments: methylmethanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet light, H(2)O(2), paraquat. However, plasmid DNA damaged by 2-chloroacetaldehyde treatment in vitro was inactivated at a greater rate in a mug mutant than in wild-type host, suggesting that MUG is required for the in vivo processing of the ethenobases. In addition, 2-chloroacetaldehyde treatment induces preferentially G.C --> C.G and A.T --> T.A transversions in mug mutant. Comparison of the mutation frequencies induced by the site-specifically incorporated epsilon C residue in E. coli wild-type versus mug indicates that MUG repairs more than 80% of epsilon C residues in vivo. Furthermore, the results show that nucleotide excision repair and recombination are not involved in the processing of epsilon C in E. coli. Based on the mutagenesis data we suggest that epsilon C may be less toxic and less mutagenic than expected. The increased spontaneous mutation rate for G.C --> A.T transition in the ung mug double mutant as compared to the single ung mutant suggest that MUG may be a back-up repair enzyme to the classic uracil-DNA glycosylase.


Asunto(s)
Acetaldehído/análogos & derivados , Disparidad de Par Base/fisiología , Citosina/análogos & derivados , Citosina/metabolismo , Reparación del ADN/fisiología , Timina ADN Glicosilasa/fisiología , Acetaldehído/farmacología , Disparidad de Par Base/genética , Daño del ADN/genética , Reparación del ADN/genética , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional/genética , Mutágenos/farmacología , Mutación/genética , Plásmidos/efectos de los fármacos , Plásmidos/metabolismo , Timina ADN Glicosilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA