RESUMEN
Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system-mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization-evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT-1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT-1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4-like (Nedd4L: E3 ligase for GLT-1), and ubiquitin-conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin-conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L-GLT-1 ubiquitination pathway decreased SIT ratio, but up-regulation increased it even in non-CSDS mice. Taken together, the decrease in GLT-1 ubiquitination may reduce the release of extracellular glutamate induced by high-potassium stimulation, which may lead to social impairment, while we could not find differences in GLT-1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT-1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.
Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Corteza Prefrontal , Derrota Social , Animales , Masculino , Ratones , Regulación hacia Abajo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Corteza Prefrontal/metabolismo , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo , UbiquitinaciónRESUMEN
Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.
Asunto(s)
Acuaporina 4 , Astrocitos , Transportador 2 de Aminoácidos Excitadores , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Humanos , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/patología , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ratones Endogámicos C57BL , Fenotipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genéticaRESUMEN
Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.
Asunto(s)
Ácido Glutámico/biosíntesis , Lóbulo Parietal/metabolismo , Corteza Prefrontal/metabolismo , Transcripción Genética/fisiología , Corteza Visual/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Factores de Edad , Animales , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Femenino , Neuronas GABAérgicas/metabolismo , Expresión Génica , Ácido Glutámico/genética , Macaca mulatta , Lóbulo Parietal/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Corteza Visual/crecimiento & desarrollo , Ácido gamma-Aminobutírico/genéticaRESUMEN
BACKGROUND: Ceftriaxone is a ß-lactam antibiotic used to treat central nervous system infections. Whether the neuroprotective effects of ceftriaxone after TBI are mediated by attenuating neuroinflammation but not its antibacterial actions is not well established. METHODS: Anesthetized male Sprague-Dawley rats were divided into sham-operated, TBI + vehicle, and TBI + ceftriaxone groups. Ceftriaxone was intraperitoneally injected at 0, 24, and 48 h with 50 or 250 mg/kg/day after TBI. During the first 120 min after TBI, we continuously measured heart rate, arterial pressure, intracranial pressure (ICP), and cerebral perfusion pressure. The infarct volume was measured by TTC staining. Motor function was measured using the inclined plane. Glutamate transporter 1 (GLT-1), neuronal apoptosis and TNF-α expression in the perilesioned cortex were investigated using an immunofluorescence assay. Bacterial evaluation was performed by Brown and Brenn's Gram staining. These parameters above were measured at 72 h after TBI. RESULTS: Compared with the TBI + vehicle group, the TBI + ceftriaxone 250 mg/kg group showed significantly lower ICP, improved motor dysfunction, reduced body weight loss, decreased infarct volume and neuronal apoptosis, decreased TBI-induced microglial activation and TNF-α expression in microglia, and increased GLT-1 expression in neurons and microglia. However, the grades of histopathological changes of antibacterial effects are zero. CONCLUSIONS: The intraperitoneal injection of ceftriaxone with 250 mg/kg/day for three days may attenuate TBI by increasing GLT-1 expression and reducing neuroinflammation and neuronal apoptosis, thereby resulting in an improvement in functional outcomes, and this neuroprotective effect is not related to its antibacterial effects.
Asunto(s)
Antibacterianos , Antiinflamatorios/uso terapéutico , Lesiones Traumáticas del Encéfalo/metabolismo , Ceftriaxona/uso terapéutico , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Fármacos Neuroprotectores/uso terapéutico , Animales , Antiinflamatorios/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ceftriaxona/farmacología , Relación Dosis-Respuesta a Droga , Transportador 2 de Aminoácidos Excitadores/agonistas , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
Glial cells have a major role in protecting neurons against various forms of stress. Especially, astrocytes mediate the bulk of glutamate clearance in the brain via specific membrane transporters (GLAST and GLT1), thereby preventing the occurrence of excitotoxic events. Although glutamate-mediated mechanisms are thought to contribute to nigral dopaminergic neuron degeneration in Parkinson's disease, detailed information on the organization of glia in the substantia nigra is still lacking. The present study was performed to provide quantitative information on the organization of astroglia and on the relationships between astrocytes and excitatory synapses in the rat substantia nigra. Using immunolabeling of GLT1 and confocal imaging, we found that the substantia nigra was filled with a dense meshwork of immunoreactive astrocyte processes. Stereological analysis performed on electron microscope images revealed that the density of immunoreactive astrocyte plasma membranes was substantial, close to 1 µm2 /µm3 , in the substantia nigra neuropil, both in the pars compacta and the pars reticulata. Excitatory synapses had on average two thirds of their perimeters free from glia, a disposition that may favor transmitter spillover. The density of glutamatergic synapses, as quantified on confocal images by the simultaneous detection of bassoon and of vesicular glutamate transporter 1 or 2, was very low (0.01 and 0.025 per µm3 in the reticulata and compacta subdivisions, respectively). Thus the ratio of GLT1-expressing glial membrane surface to glutamatergic synapses was very high (40-100 µm2 ), suggesting an efficient regulation of extracellular glutamate concentrations.
Asunto(s)
Transportador 2 de Aminoácidos Excitadores/biosíntesis , Neuroglía/metabolismo , Sustancia Negra/metabolismo , Sinapsis/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/ultraestructura , Masculino , Neuroglía/ultraestructura , Ratas , Ratas Wistar , Sustancia Negra/ultraestructura , Sinapsis/ultraestructuraRESUMEN
Central sensitization is the potential pathogenesis of chronic migraine (CM) and is related to persistent neuronal hyperexcitability. Dysfunction of excitatory amino acid transporter 2 (EAAT2) leads to the accumulation of glutamate in the synaptic cleft, which may contribute to central sensitization by overactivating glutamate N-methyl-D-aspartate receptors and enhancing synaptic plasticity. However, the therapeutic potential of CM by targeting glutamate clearance remains largely unexplored. The purpose of this study was to investigate the role of EAAT2 in CM central sensitization and explore the effect of EAAT2 expression enhancer LDN-212320 in CM rats. The glutamate concentration was measured by high-performance liquid chromatography in a rat model of CM. Then, q-PCR and western blots were performed to detect EAAT2 expression, and the immunoreactivity of astrocytes was detected by immunofluorescence staining. To understand the effect of EAAT2 on central sensitization of CM, mechanical and thermal hyperalgesia and central sensitization-associated proteins were examined after administration of LDN-212320. In addition, the expression of synaptic-associated proteins was examined and Golgi-Cox staining was used to observe the dendritic spine density of trigeminal nucleus caudalis neurons. Also, the synaptic ultrastructure was observed by transmission electron microscope (TEM) to explore the changes of synaptic plasticity. In our study, elevated glutamate concentration and decreased EAAT2 expression were found in the trigeminal nucleus caudalis of CM rats, administration of LDN-212320 greatly up-regulated the protein expression of EAAT2, alleviated hyperalgesia, decreased the concentration of glutamate and the activation of astrocytes. Furthermore, reductions in calcitonin gene-related peptide, substance P(SP), and phosphorylated NR2B were examined after administration of LDN-212320. Moreover evaluation of the synaptic structure, synaptic plasticity-, and central sensitization-related proteins indicated that EAAT2 might participate in the CM central sensitization process by regulating synaptic plasticity. Taken together, up-regulation of EAAT2 expression has a protective effect in CM rats, and LDN-212320 may have clinical therapeutic potential. Cover Image for this issue: https://doi.org/10.1111/jnc.14769.
Asunto(s)
Astrocitos/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Trastornos Migrañosos/metabolismo , Regulación hacia Arriba/fisiología , Animales , Enfermedad Crónica , Craneotomía/efectos adversos , Craneotomía/métodos , Mediadores de Inflamación/efectos adversos , Mediadores de Inflamación/metabolismo , Masculino , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/etiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Piridazinas/farmacología , Piridazinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Sprague-DawleyRESUMEN
Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.
Asunto(s)
Astrocitos/citología , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Proteínas del Tejido Nervioso/genética , Neurópilo/citología , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Receptores Notch/genética , Factores de Transcripción/genética , Animales , Astrocitos/metabolismo , Linaje de la Célula/fisiología , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/citología , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores Notch/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Glutamatergic dysfunction has been implicated in the pathogenesis of depressive disorders and Huntington's disease (HD), in which depression is the most common psychiatric symptom. Synaptic glutamate homeostasis is regulated by cystine-dependent glutamate transporters, including GLT-1 and system xc- In HD, the enzyme regulating cysteine (and subsequently cystine) production, cystathionine-γ-lygase, has recently been shown to be lowered. The aim of the present study was to establish whether cysteine supplementation, using N-acetylcysteine (NAC) could ameliorate glutamate pathology through the cystine-dependent transporters, system xc- and GLT-1. We demonstrate that the R6/1 transgenic mouse model of HD has lower basal levels of cystine, and showed depressive-like behaviors in the forced-swim test. Administration of NAC reversed these behaviors. This effect was blocked by co-administration of the system xc- and GLT-1 inhibitors CPG and DHK, showing that glutamate transporter activity was required for the antidepressant effects of NAC. NAC was also able to specifically increase glutamate in HD mice, in a glutamate transporter-dependent manner. These in vivo changes reflect changes in glutamate transporter protein in HD mice and human HD post-mortem tissue. Furthermore, NAC was able to rescue changes in key glutamate receptor proteins related to excitotoxicity in HD, including NMDAR2B. Thus, we have shown that baseline reductions in cysteine underlie glutamatergic dysfunction and depressive-like behavior in HD and these changes can be rescued by treatment with NAC. These findings have implications for the development of new therapeutic approaches for depressive disorders.
Asunto(s)
Acetilcisteína/administración & dosificación , Depresión/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores/genética , Enfermedad de Huntington/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/genética , Animales , Autopsia , Conducta Animal/efectos de los fármacos , Emparejamiento Cromosómico/efectos de los fármacos , Emparejamiento Cromosómico/genética , Cistationina gamma-Liasa/biosíntesis , Cistationina gamma-Liasa/genética , Cistina/biosíntesis , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones TransgénicosRESUMEN
BACKGROUND: Laquinimod is an immunomodulatory drug under clinical investigation for the treatment of the progressive form of multiple sclerosis (MS) with both anti-inflammatory and neuroprotective effects. Excitotoxicity, a prominent pathophysiological feature of MS and of its animal model, experimental autoimmune encephalomyelitis (EAE), involves glutamate transporter (GluT) dysfunction in glial cells. The aim of this study was to assess whether laquinimod might exert direct neuroprotective effects by interfering with the mechanisms of excitotoxicity linked to GluT function impairments in EAE. METHODS: Osmotic minipumps allowing continuous intracerebroventricular (icv) infusion of laquinimod for 4 weeks were implanted into C57BL/6 mice before EAE induction. EAE cerebella were taken to perform western blot and qPCR experiments. For ex vivo experiments, EAE cerebellar slices were incubated with laquinimod before performing electrophysiology, western blot, and qPCR. RESULTS: In vivo treatment with laquinimod attenuated EAE clinical score at the peak of the disease, without remarkable effects on inflammatory markers. In vitro application of laquinimod to EAE cerebellar slices prevented EAE-linked glutamatergic alterations without mitigating astrogliosis and inflammation. Moreover, such treatment induced an increase of Slcla3 mRNA coding for the glial glutamate-aspartate transporter (GLAST) without affecting the protein content. Concomitantly, laquinimod significantly increased the levels of the glial glutamate transporter 1 (GLT-1) protein and pharmacological blockade of GLT-1 function fully abolished laquinimod anti-excitotoxic effect. CONCLUSIONS: Overall, our results suggest that laquinimod protects against glutamate excitotoxicity of the cerebellum of EAE mice by bursting the expression of glial glutamate transporters, independently of its anti-inflammatory effects.
Asunto(s)
Antiinflamatorios/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ácido Glutámico/metabolismo , Quinolonas/administración & dosificación , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Femenino , Infusiones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Distribución AleatoriaRESUMEN
Ischemic stroke is the leading cause of disability, but effective therapies are currently widely lacking. Recovery from stroke is very much dependent on the possibility to develop treatments able to both halt the neurodegenerative process as well as to foster adaptive tissue plasticity. Here we show that ischemic mice treated with neural precursor cell (NPC) transplantation had on neurophysiological analysis, early after treatment, reduced presynaptic release of glutamate within the ipsilesional corticospinal tract (CST), and an enhanced NMDA-mediated excitatory transmission in the contralesional CST. Concurrently, NPC-treated mice displayed a reduced CST degeneration, increased axonal rewiring, and augmented dendritic arborization, resulting in long-term functional amelioration persisting up to 60 d after ischemia. The enhanced functional and structural plasticity relied on the capacity of transplanted NPCs to localize in the peri-ischemic and ischemic area, to promote the upregulation of the glial glutamate transporter 1 (GLT-1) on astrocytes and to reduce peri-ischemic extracellular glutamate. The upregulation of GLT-1 induced by transplanted NPCs was found to rely on the secretion of VEGF by NPCs. Blocking VEGF during the first week after stroke reduced GLT-1 upregulation as well as long-term behavioral recovery in NPC-treated mice. Our results show that NPC transplantation, by modulating the excitatory-inhibitory balance and stroke microenvironment, is a promising therapy to ameliorate disability, to promote tissue recovery and plasticity processes after stroke. SIGNIFICANCE STATEMENT: Tissue damage and loss of function occurring after stroke can be constrained by fostering plasticity processes of the brain. Over the past years, stem cell transplantation for repair of the CNS has received increasing interest, although underlying mechanism remain elusive. We here show that neural stem/precursor cell transplantation after ischemic stroke is able to foster axonal rewiring and dendritic plasticity and to induce long-term functional recovery. The observed therapeutic effect of neural precursor cells seems to underlie their capacity to upregulate the glial glutamate transporter on astrocytes through the vascular endothelial growth factor inducing favorable changes in the electrical and molecular stroke microenvironment. Cell-based approaches able to influence plasticity seem particularly suited to favor poststroke recovery.
Asunto(s)
Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/terapia , Animales , Conducta Animal , Isquemia Encefálica/metabolismo , Infarto Cerebral/patología , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Técnicas de Placa-Clamp , Recuperación de la Función , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/psicología , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT: Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.
Asunto(s)
Astrocitos/efectos de los fármacos , Proteína GAP-43/biosíntesis , Proteína GAP-43/genética , Gliosis/genética , Microglía/efectos de los fármacos , FN-kappa B/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Factor de Transcripción STAT3/genética , Receptor Toll-Like 4/genética , Animales , Citocinas/biosíntesis , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Activación de Macrófagos/efectos de los fármacos , Neuronas , Fosforilación , Ratas , Ratas Sprague-Dawley , Transactivadores/biosíntesis , Transactivadores/genética , Factores de TranscripciónRESUMEN
Orexin-A, which is an endogenous neuropeptide, is reported to have a protective role in ischemic stroke. High-concentration glutamic acid (Glu) induced by hypoxia injury in ischemic stroke can be inhibited by glial glutamate transporter GLT-1 which is only expressed in astroglia cells. A previous study reported that Orexin-A may regulate GLT-1 expression. However, the role of orexin-A in the regulation of GLT-1 in ischemic stroke still remains unclear. In this study, we aimed to investigate the effect and the underlying mechanism of orexin-A on Glu uptake in astrocytes in vitro and this effect on protecting the neurons from anoxia/hypoglycemic injury. The expression of GLT-1 significantly increased in the astrocytes with orexin-A treatment under anoxia/hypoglycemic conditions, promoting the uptake of Glu and inhibiting the apoptosis of co-cultured cells of astrocytes and neurons. However, these effects were significantly weakened by treatment with orexin-A receptor 1 (OX1R) antagonist. Orexin-A significantly up-regulated the expressions of PKCα and ERK1/2 under anoxia/hypoglycemic conditions in astrocytes, whereas the OX1R antagonist markedly reversed the effect. Furthermore, PKCα or ERK1/2 inhibitor significantly constrained the GLT-1 expression in astrocytes and facilitated the apoptosis of co-cultured cells, and GLT-1 overexpression could reverse those effects of PKCα or ERK1/2 inhibitor. Taken together, orexin-A promoted the GLT-1 expression via OX1R/PKCα/ERK1/2 pathway in astrocytes and protected co-cultured cells against anoxia/hypoglycemic injury.
Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ácido Glutámico/metabolismo , Hipoglucemia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/sangre , Neuronas/metabolismo , Receptores de Orexina/metabolismo , Orexinas/farmacología , Proteína Quinasa C-alfa/biosíntesis , Animales , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Regulación de la Expresión Génica/efectos de los fármacos , Ratas , Ratas Sprague-DawleyRESUMEN
Glutamate transporter-1 (GLT-1), a major glutamate transporter expressed in astrocytes, takes up excess glutamate from the micro-environment in order to prevent excitotoxicity. Drugs that increase GLT-1 expression may have therapeutic effects in disorders associated with neuronal excitotoxicity. 2,3,4',5-tetrahydroxystilbene 2-O-ß-D-glucoside (TSG), a monomer of stilbene from polygonummultiflorum, exerts neuroprotection in a range of experimental models such as Alzheimer's disease and brain ischemia. In this study, we evaluated the effect of TSG on GLT-1 protein expression in mouse primary-cultured astrocytes. Results showed that TSG markedly increased the GLT-1 protein expression level in mouse primary-cultured astrocytes in a dose- and time-dependent manner, and this increase was mediated by the activation of protein kinase B (Akt) but not by the activation of extracellular signal-regulated protein kinase 1/2. Furthermore, inhibition of cAMP response element-binding protein, but not nuclear factor kappa B, abolished the TSG-mediated increase in GLT-1 protein expression in cultured astrocytes. Collectively, these findings may provide novel insights into the mechanism for TSG in neuroprotection, and would help search new agents targeting neurodegenerative disorders associated with impaired astrocytic glutamate transporters.
Asunto(s)
Astrocitos/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Glucósidos/farmacología , Estilbenos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Glucósidos/química , Ratones , Ratones Endogámicos C57BL , Estilbenos/química , Regulación hacia Arriba/fisiologíaRESUMEN
The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases. In this study, we investigated the role of TCDD in regulating the expression of glutamate transporter GLT-1 in astrocytes. TCDD, at concentrations of 0.1-100 nm, had no significantly harmful effect on the viability of C6 glioma cells. However, the expression of GLT-1 in C6 glioma cells was downregulated in a dose- and time-dependent manner. TCDD also caused activation of protein kinase C (PKC), as TCDD induced translocation of the PKC from the cytoplasm or perinuclear to the membrane. The translocation of PKC was inhibited by one Ca(2+) blocker, nifedipine, suggesting that the effects are triggered by the initial elevated intracellular concentration of free Ca(2+) . Finally, we showed that inhibition of the PKC activity reverses the TCDD-triggered reduction of GLT-1. In summary, our results suggested that TCDD exposure could downregulate the expression of GLT-1 in C6 via Ca(2+) /PKC pathway. The downregulation of GLT-1 might participate in TCDD-mediated neurotoxicity. Copyright © 2016 John Wiley & Sons, Ltd.
Asunto(s)
Astrocitos/efectos de los fármacos , Calcio/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Dibenzodioxinas Policloradas/toxicidad , Proteína Quinasa C/metabolismo , Animales , Astrocitos/metabolismo , Señalización del Calcio , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ratas , Transducción de Señal , Factores de TiempoRESUMEN
A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.
Asunto(s)
Astrocitos/patología , Vértebras Cervicales , Diafragma/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Miembro Anterior/fisiopatología , Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Diafragma/fisiopatología , Transportador 2 de Aminoácidos Excitadores/genética , Femenino , Miembro Anterior/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Nervio Frénico/metabolismo , Nervio Frénico/patología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patologíaRESUMEN
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells. We found that astroglial glutamate transporter subtype glutamate transporter 1 (GLT1) and glutamate uptake is significantly reduced in the cortex of fmr1(-/-) mice. Correspondingly, neuronal excitability is also enhanced in acute fmr1(-/-) (but not in fmr1(+/+) control) cortical slices treated with low doses (10 µm) of the GLT1-specific inhibitor dihydrokainate (DHK). Using mismatched astrocyte and neuron co-cultures, we demonstrate that the loss of astroglial (but not neuronal) FMRP particularly reduces neuron-dependent GLT1 expression and glutamate uptake in co-cultures. Interestingly, protein (but not mRNA) expression and the (S)-3,5-dihydroxyphenylglycine-dependent Ca(2+) responses of astroglial mGluR5 receptor are also selectively reduced in fmr1(-/-) astrocytes and brain slices, attenuating neuron-dependent GLT1 expression. Subsequent FMRP immunoprecipitation and QRT-PCR analysis showed that astroglial mGluR5 (but not GLT1) mRNA is associated with FMRP. In summary, our results provide evidence that FMRP positively regulates translational expression of mGluR5 in astroglial cells, and FMRP-dependent down-regulation of mGluR5 underlies GLT1 dysregulation in fmr1(-/-) astrocytes. The dysregulation of GLT1 and reduced glutamate uptake may potentially contribute to enhanced neuronal excitability observed in the mouse model of FXS.
Asunto(s)
Astrocitos/metabolismo , Regulación hacia Abajo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Biosíntesis de Proteínas , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Astrocitos/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Transportador 2 de Aminoácidos Excitadores/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Técnicas de Silenciamiento del Gen , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Ratones , Neuronas/metabolismo , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genéticaRESUMEN
Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high-affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. The glutamate transporter GLT-1 is expressed by astrocytes, which also express dopamine receptors. Regulation of prefrontal cortical (PFC) GLT-1 potentially offers a novel treatment approach to the cognitive deficits of schizophrenia. Partial PFC dopamine deafferentation increased membrane expression of GLT-1 protein and glutamate uptake, but did not alter levels of the other two neocortical glutamate transporters, GLAST and EAAC1.
Asunto(s)
Astrocitos/metabolismo , Dopamina/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Regulación de la Expresión Génica , Corteza Prefrontal/metabolismo , Animales , Desnervación , Masculino , Unión Proteica/genética , Ratas , Ratas Sprague-DawleyRESUMEN
Our previous study has shown that cerebral ischemic preconditioning (CIP) can up-regulate the expression of glial glutamate transporter-1 (GLT-1) during the induction of brain ischemic tolerance in rats. The present study was undertaken to further explore the uptake activity of GLT-1 in the process by observing the changes in the concentration of extracellular glutamate with cerebral microdialysis and high-performance liquid chromatography. The results showed that a significant pulse of glutamate concentration reached the peak value of sevenfold of the basal level after lethal ischemic insult, which was associated with delayed neuronal death in the CA1 hippocampus. When the rats were pretreated 2 days before the lethal ischemic insult with CIP which protected the pyramidal neurons against delayed neuronal death, the peak value of glutamate concentration decreased to 3.9 fold of the basal level. Furthermore, pre-administration of dihydrokainate, an inhibitor of GLT-1, prevented the protective effect of CIP on ischemia-induced CA1 cell death. At the same time, compared with the CIP + Ischemia group, the peak value of glutamate concentration significantly increased and reached sixfold of the basal level. These results indicate that CIP induced brain ischemic tolerance via up-regulating GLT-1 uptake activity for glutamate and then decreasing the excitotoxicity of glutamate.
Asunto(s)
Transportador 2 de Aminoácidos Excitadores/biosíntesis , Ácido Glutámico/metabolismo , Precondicionamiento Isquémico , Animales , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hipocampo/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Masculino , Microdiálisis , Ratas Wistar , Regulación hacia ArribaRESUMEN
The synaptic glutamate level homeostasis is mainly maintained by the astrocytes membrane bound glutamate transporter type-1 (GLT-1/EAAT2). Alterations in its expression during development and aging and the underlying mechanisms are not well studied. Here, we report that NF-κB interaction was highest in both cerebral and cerebellar cortices at day 15 when compared with that at day 0 during development, and it further declined significantly in day 45, and remained unchanged in 20 and 70 weeks mice. On the other hand, N-myc interaction was highest at 0 day which significantly declined at 15-day and interestingly remained unaltered at later ages in both the cortices. This age dependent reciprocal pattern of NF-κB and N-myc interactions with their cognate GLT-1 promoter sequences was further correlated with GLT-1 protein and transcript levels. We found that higher NF-κB interaction with its cognate GLT-1 promoter sequences correlates with up-regulation whereas the higher N-myc interaction correlates with down-regulation of GLT-1 expression during postnatal developmental age up to 15 day, however, such phenomenon was not found in the higher ages from day 45 to 70 weeks. Thus our data suggests a postnatal development- and age dependent differential interaction of transcription factors NF-κB and N-myc to their respective sequences and they act as positive and negative regulator, respectively of GLT-1 gene expression in the brain during early developmental period in both cerebral and cerebellar cortices which might be different in aging of mice.
Asunto(s)
Corteza Cerebelosa/crecimiento & desarrollo , Corteza Cerebral/crecimiento & desarrollo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , FN-kappa B/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Corteza Cerebelosa/metabolismo , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Regiones Promotoras Genéticas/fisiologíaRESUMEN
AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.