Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715405

RESUMEN

OBJECTIVES: This retrospective study aimed to identify quantitative magnetic resonance imaging markers in the brainstem of preterm neonates with intraventricular hemorrhages. It delves into the intricate associations between quantitative brainstem magnetic resonance imaging metrics and neurodevelopmental outcomes in preterm infants with intraventricular hemorrhage, aiming to elucidate potential relationships and their clinical implications. MATERIALS AND METHODS: Neuroimaging was performed on preterm neonates with intraventricular hemorrhage using a multi-dynamic multi-echo sequence to determine T1 relaxation time, T2 relaxation time, and proton density in specific brainstem regions. Neonatal outcome scores were collected using the Bayley Scales of Infant and Toddler Development. Statistical analysis aimed to explore potential correlations between magnetic resonance imaging metrics and neurodevelopmental outcomes. RESULTS: Sixty preterm neonates (mean gestational age at birth 26.26 ± 2.69 wk; n = 24 [40%] females) were included. The T2 relaxation time of the midbrain exhibited significant positive correlations with cognitive (r = 0.538, P < 0.0001, Pearson's correlation), motor (r = 0.530, P < 0.0001), and language (r = 0.449, P = 0.0008) composite scores at 1 yr of age. CONCLUSION: Quantitative magnetic resonance imaging can provide valuable insights into neurodevelopmental outcomes after intraventricular hemorrhage, potentially aiding in identifying at-risk neonates. Multi-dynamic multi-echo sequence sequences hold promise as an adjunct to conventional sequences, enhancing the sensitivity of neonatal magnetic resonance neuroimaging and supporting clinical decision-making for these vulnerable patients.


Asunto(s)
Tronco Encefálico , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Recién Nacido , Estudios Retrospectivos , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/crecimiento & desarrollo , Lactante , Hemorragia Cerebral Intraventricular/diagnóstico por imagen , Hemorragia Cerebral/diagnóstico por imagen , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Edad Gestacional
2.
Neuroimage ; 297: 120721, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968977

RESUMEN

Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.


Asunto(s)
Encéfalo , Cardiopatías Congénitas , Imagen por Resonancia Magnética , Humanos , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/genética , Femenino , Masculino , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adolescente , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Preescolar , Imagen de Difusión por Resonancia Magnética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/genética
3.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894126

RESUMEN

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Hidrolasas/química , Hidrolasas/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico por imagen , Tubulina (Proteína)/metabolismo , Adulto Joven
4.
Hum Brain Mapp ; 45(13): e26815, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254138

RESUMEN

With brain structure and function undergoing complex changes throughout childhood and adolescence, age is a critical consideration in neuroimaging studies, particularly for those of individuals with neurodevelopmental conditions. However, despite the increasing use of large, consortium-based datasets to examine brain structure and function in neurotypical and neurodivergent populations, it is unclear whether age-related changes are consistent between datasets and whether inconsistencies related to differences in sample characteristics, such as demographics and phenotypic features, exist. To address this, we built models of age-related changes of brain structure (regional cortical thickness and regional surface area; N = 1218) and function (resting-state functional connectivity strength; N = 1254) in two neurodiverse datasets: the Province of Ontario Neurodevelopmental Network and the Healthy Brain Network. We examined whether deviations from these models differed between the datasets, and explored whether these deviations were associated with demographic and clinical variables. We found significant differences between the two datasets for measures of cortical surface area and functional connectivity strength throughout the brain. For regional measures of cortical surface area, the patterns of differences were associated with race/ethnicity, while for functional connectivity strength, positive associations were observed with head motion. Our findings highlight that patterns of age-related changes in the brain may be influenced by demographic and phenotypic characteristics, and thus future studies should consider these when examining or controlling for age effects in analyses.


Asunto(s)
Conjuntos de Datos como Asunto , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Niño , Adolescente , Adulto Joven , Adulto , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/fisiopatología , Trastornos del Neurodesarrollo/patología , Conectoma , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/anatomía & histología , Envejecimiento/fisiología
5.
Hum Brain Mapp ; 45(14): e70025, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39394915

RESUMEN

Childhood adversity (CA), including childhood adverse life events, increases the risk for development of psychiatric disorders later in life. Both CA and psychiatric disorders are associated with structural brain changes and dysfunctional hypothalamic-pituitary-adrenal-axis. However, many studies investigated single diagnostic and single regions of interest of the brain, and did not take stress reactivity into account. We investigated associations of CA and cortisol levels with gray matter volume and cortical thickness, in a whole-brain manner. Primary analysis constituted of a transdiagnostic approach, followed by a moderation analysis to investigate the influence of diagnosis. Patients with stress-related and/or neurodevelopmental disorders and matched healthy controls underwent an magnetic resonance imaging scan, next to assessing hair cortisol levels and CA/life events. CA was reported by 62-72% of the patients versus 33% of the controls. Primary transdiagnostic linear regression analyses revealed that CA was not associated with gray matter volume, while childhood life events were associated with lower right thalamic volume. Hair cortisol was not associated with any lobe volume. None of the associations were moderated by diagnosis. In conclusion, CA is a risk factor that needs to be taken into account when investigating psychiatric disorders. Yet the relationship with structural brain changes and stress reactivity is less clear than postulated on the basis of more seed-based studies.


Asunto(s)
Experiencias Adversas de la Infancia , Sustancia Gris , Cabello , Hidrocortisona , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo , Estrés Psicológico , Humanos , Femenino , Masculino , Estrés Psicológico/diagnóstico por imagen , Estrés Psicológico/patología , Estudios Transversales , Hidrocortisona/metabolismo , Cabello/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Adulto , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/fisiopatología , Comorbilidad , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Persona de Mediana Edad
6.
Psychol Med ; 54(10): 2599-2611, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509831

RESUMEN

BACKGROUND: Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS: Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS: Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION: Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.


Asunto(s)
Experiencias Adversas de la Infancia , Encéfalo , Imagen por Resonancia Magnética , Humanos , Niño , Adolescente , Masculino , Femenino , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Adulto , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Estudios de Cohortes , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/fisiopatología
7.
Am J Med Genet A ; 194(9): e63658, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38712921

RESUMEN

We present a case study of a patient exhibiting acquired microcephaly along with global developmental delay and drug-resistant epilepsy. Brain magnetic resonance imaging revealed distinctive features, including a Z-shaped morphology of the brainstem, volumetric reduction of white matter, diffuse thinning of the corpus callosum, and partial fusion of the cerebellar hemispheres at their most cranial portion. Whole-exome sequencing uncovered a pathogenic variant in the ARF3 gene c.200A>T, p.(Asp67Val). The neurodevelopmental disorder associated with the ARF3 gene is exceptionally rare, with only two previously documented cases in the literature. This disorder is characterized by global developmental delay and brain malformations, particularly affecting the white matter, cerebellum, and brainstem. It can also manifest as acquired microcephaly and epilepsy. These phenotypic characteristics align with Golgipathies, underscoring the significance of considering this group of conditions in relevant clinical contexts. In cases where a Z-shaped morphology of the brainstem is observed, ARF3-associated disorder should be included in the list of differential diagnoses.


Asunto(s)
Factores de Ribosilacion-ADP , Trastornos del Neurodesarrollo , Femenino , Humanos , Factores de Ribosilacion-ADP/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética , Microcefalia/genética , Microcefalia/patología , Microcefalia/diagnóstico , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/diagnóstico por imagen , Fenotipo , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Preescolar
8.
Ultrasound Obstet Gynecol ; 63(6): 746-757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38214436

RESUMEN

OBJECTIVES: To describe the types of brain injury and subsequent neurodevelopmental outcome in fetuses and neonates from pregnancies with twin-twin transfusion syndrome (TTTS). Additionally, to determine risk factors for brain injury and to review the use of neuroimaging modalities in these cases. METHODS: This was a retrospective cohort study of consecutive TTTS pregnancies treated with laser surgery in a single fetal therapy center between January 2010 and January 2020. The primary outcome was the incidence of brain injury, classified into predefined groups. Secondary outcomes included adverse outcome (perinatal mortality or neurodevelopmental impairment), risk factors for brain injury and the number of magnetic resonance imaging (MRI) scans. RESULTS: Cranial ultrasound was performed in all 466 TTTS pregnancies and in 685/749 (91%) liveborn neonates. MRI was performed in 3% of pregnancies and 4% of neonates. Brain injury was diagnosed in 16/935 (2%) fetuses and 37/685 (5%) neonates and all predefined injury groups were represented. Four fetal and four neonatal cases of cerebellar hemorrhage were detected. Among those with brain injury, perinatal mortality occurred in 11/16 (69%) fetuses and 8/37 (22%) neonates. Follow-up was available for 29/34 (85%) long-term survivors with brain injury and the mean age at follow-up was 46 months. Neurodevelopmental impairment was present in 9/29 (31%) survivors with brain injury. Adverse outcome occurred in 28/53 (53%) TTTS individuals with brain injury. The risk of brain injury was increased after recurrent TTTS/post-laser twin anemia-polycythemia sequence (TAPS) (odds ratio (OR), 3.095 (95% CI, 1.581-6.059); P = 0.001) and lower gestational age at birth (OR per 1-week decrease in gestational age, 1.381 (95% CI, 1.238-1.541); P < 0.001). CONCLUSIONS: Based on dedicated neurosonography and limited use of MRI, brain injury was diagnosed in 2% of fetuses and 5% of neonates with TTTS. Adverse outcome was seen in over half of cases with brain injury. Brain injury was related to recurrent TTTS/post-laser TAPS and a lower gestational age at birth. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
Transfusión Feto-Fetal , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Transfusión Feto-Fetal/diagnóstico por imagen , Femenino , Embarazo , Recién Nacido , Estudios Retrospectivos , Neuroimagen/métodos , Ultrasonografía Prenatal , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/etiología , Adulto , Factores de Riesgo , Edad Gestacional , Mortalidad Perinatal , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/epidemiología , Terapia por Láser
9.
Dev Med Child Neurol ; 66(7): 882-891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38204357

RESUMEN

AIM: To examine whether antenatal diagnosis modifies relationships between neonatal brain volumes and 18-month neurodevelopmental outcomes in children with transposition of the great arteries (TGA). METHOD: In a retrospective cohort of 139 children with TGA (77 antenatally diagnosed), we obtained total brain volumes (TBVs) on pre- (n = 102) and postoperative (n = 112) magnetic resonance imaging. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley Scales of Infant and Toddler Development, Third Edition. Generalized estimating equations with interaction terms were used to determine whether antenatal diagnosis modified associations between TBVs and neurodevelopmental outcomes accounting for postmenstrual age at scan, brain injury, and ventricular septal defect. RESULTS: Infants with postnatal diagnosis had more preoperative hypotension (35% vs 14%, p = 0.004). The interactions between antenatal diagnosis and TBVs were significantly related to cognitive (p = 0.003) outcomes. Specifically, smaller TBVs were associated with lower cognitive scores in infants diagnosed postnatally; this association was attenuated in those diagnosed antenatally. INTERPRETATION: Antenatal diagnosis modifies associations between neonatal brain volume and 18-month cognitive outcome in infants with TGA. These findings suggest that antenatal diagnosis may be neuroprotective, possibly through improved preoperative clinical status. These data highlight the need to improve antenatal diagnosis rates. WHAT THIS PAPER ADDS: Antenatal diagnosis of transposition of the great arteries modified relationships between neonatal brain volume and neurodevelopment. Smaller brain volumes related to poorer cognitive scores with postnatal diagnosis only. There was more preoperative hypotension in the postnatal diagnosis group.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Diagnóstico Prenatal , Transposición de los Grandes Vasos , Humanos , Transposición de los Grandes Vasos/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Masculino , Lactante , Recién Nacido , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/diagnóstico , Desarrollo Infantil/fisiología , Embarazo
10.
Childs Nerv Syst ; 40(8): 2521-2526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38676719

RESUMEN

PURPOSE: Historically, the presence of gray matter heterotopia was a concern for adverse postnatal neurocognitive status in patients undergoing fetal closure of open spinal dysraphism. The purpose of this study was to evaluate neurodevelopmental outcomes and the onset of seizures during early childhood in patients with a prenatal diagnosis of myelomeningocele/myeloschisis (MMC) and periventricular nodular heterotopia (PVNH). METHODS: All patients evaluated at the Center for Fetal Diagnosis and Treatment with a diagnosis of MMC between June 2016 to March 2023 were identified. PVNH was determined from prenatal and/or postnatal MRI. The Bayley Scales of Infant and Toddler Development (edition III or IV) were used for neurodevelopmental assessments. Patients were screened for seizures/epilepsy. RESULTS: Of 497 patients evaluated with a prenatal diagnosis of MMC, 99 were found to have PVNH on prenatal MRI, of which 35 had confirmed PVNH on postnatal imaging. From the 497 patients, 398 initially did not exhibit heterotopia on prenatal MRI, but 47 of these then had confirmed postnatal PVNH. The presence of PVNH was not a significant risk factor for postnatal seizures in early childhood. The average neurodevelopmental scores were not significantly different among heterotopia groups for cognitive, language, and motor domains. CONCLUSION: The presence of PVNH in patients with a prenatal diagnosis of MMC does not indicate an increased risk for neurodevelopmental delay at 1 year of age. We did not demonstrate an association with seizures/epilepsy. These findings can aid clinicians in prenatal consultation regarding fetal repair of open spinal dysraphism. Long-term follow-up is required to discern the true association between PVNH seen on prenatal imaging and postnatal seizures/epilepsy and neurodevelopmental outcomes.


Asunto(s)
Meningomielocele , Heterotopia Nodular Periventricular , Diagnóstico Prenatal , Convulsiones , Humanos , Femenino , Masculino , Convulsiones/etiología , Convulsiones/diagnóstico por imagen , Meningomielocele/complicaciones , Meningomielocele/cirugía , Meningomielocele/diagnóstico por imagen , Lactante , Preescolar , Embarazo , Diagnóstico Prenatal/métodos , Heterotopia Nodular Periventricular/complicaciones , Heterotopia Nodular Periventricular/diagnóstico por imagen , Heterotopia Nodular Periventricular/cirugía , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/diagnóstico por imagen , Recién Nacido
11.
Pediatr Radiol ; 54(9): 1523-1531, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38980354

RESUMEN

BACKGROUND: Early neurorehabilitation can enhance neurocognitive outcomes in very preterm infants (<32 weeks), and conventional magnetic resonance imaging (MRI) is commonly used to assess neonatal brain injury; however, the predictive value for neurodevelopmental delay is limited. Timely predictive quantitative biomarkers are needed to improve early identification and management of infants at risk of neurodevelopmental delay. OBJECTIVE: To evaluate the potential of quantitative synthetic MRI measurements at term-equivalent age as predictive biomarkers of neurodevelopmental impairment and establish practical cutoff values to guide clinical decision-making. MATERIALS AND METHODS: This retrospective study included 93 very preterm infants who underwent synthetic MRI at term-equivalent age between January 2017 and September 2020. Clinical outcomes were assessed using the Bayley-III scale of infant development (mean age 2.1 years). The predictive value for impaired development was analyzed using receiver operating characteristic curves for synthetic MRI-based volumetry and T1 and T2 relaxation measurements. RESULTS: The T1 relaxation time in the posterior limb of the internal capsule was a potent predictor of severe (sensitivity, 92%; specificity, 80%; area under the curve (AUC), 0.91) and mild or severe (AUC, 0.75) developmental impairment. T2 relaxation time in the posterior limb of the internal capsule was a significant predictor of severe impairment (AUC, 0.76), whereas the brain parenchymal volume was a significant predictor of severe (AUC, 0.72) and mild or severe impairment (AUC, 0.71) outperforming the reported qualitative MRI scores (AUC, 0.66). CONCLUSION: The proposed cutoff values for T1 relaxation time in the posterior limb of the internal capsule and for total brain volume measurements, derived from synthetic MRI, show promise as predictors of both mild and severe neurodevelopmental impairment in very preterm infants.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Estudios Retrospectivos , Recién Nacido , Encéfalo/diagnóstico por imagen , Valor Predictivo de las Pruebas , Recien Nacido Prematuro , Recien Nacido Extremadamente Prematuro , Sensibilidad y Especificidad , Tamaño de los Órganos , Preescolar , Lactante , Trastornos del Neurodesarrollo/diagnóstico por imagen
12.
Prenat Diagn ; 43(9): 1247-1250, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37409888

RESUMEN

We report two male fetuses born to a healthy unrelated couple, with agenesis of the corpus callosum identified on detailed 20-week ultrasound scans and confirmed by in-utero MRI. Whole-genome sequencing identified a likely pathogenic missense variant in the CLCN4 gene, establishing this as the causative gene in the family. Pathogenic variants in the CLCN4 gene cause a neurodevelopmental disorder (also called Raynaud-Claes syndrome) inherited in an X-linked pattern. The disorder is characterised by developmental delay, intellectual disability, autism spectrum disorder, epilepsy, mental health conditions, and significant feeding difficulties, predominantly, but not exclusively, affecting males. This is the first report of a prenatal phenotype associated with variants in the CLCN4 gene. The diagnosis of the CLCN4-related neurodevelopmental disorder in this family allowed accurate genetic counseling and discussion of reproductive choices. This leaves uncertainty about the possibility of a postnatal neurodevelopmental phenotype in heterozygous females, which we discuss.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Embarazo , Femenino , Masculino , Humanos , Trastorno del Espectro Autista/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Diagnóstico Prenatal , Cuerpo Calloso , Feto/patología , Canales de Cloruro
13.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34907471

RESUMEN

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Mutación , Trastornos del Neurodesarrollo/genética , Adolescente , Empalme Alternativo/genética , Sustitución de Aminoácidos , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Cromosomas Humanos X/genética , Codón sin Sentido , Enfermedades en Gemelos/diagnóstico por imagen , Enfermedades en Gemelos/genética , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Variación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Mutación Missense , Trastornos del Neurodesarrollo/diagnóstico por imagen , Fenotipo , RNA-Seq , Gemelos Monocigóticos , Adulto Joven
14.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33615640

RESUMEN

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Asunto(s)
Encéfalo , Variaciones en el Número de Copia de ADN , Imagen por Resonancia Magnética , Trastornos Mentales , Trastornos del Neurodesarrollo , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Trastornos Mentales/patología , Estudios Multicéntricos como Asunto , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
15.
Neuropsychol Rev ; 32(2): 400-418, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893904

RESUMEN

Structural magnetic resonance imaging (sMRI) offers immense potential for increasing our understanding of how anatomical brain development relates to clinical symptoms and functioning in neurodevelopmental disorders. Clinical developmental sMRI may help identify neurobiological risk factors or markers that may ultimately assist in diagnosis and treatment. However, researchers and clinicians aiming to conduct sMRI studies of neurodevelopmental disorders face several methodological challenges. This review offers hands-on guidelines for clinical developmental sMRI. First, we present brain morphometry metrics and review evidence on typical developmental trajectories throughout adolescence, together with atypical trajectories in selected neurodevelopmental disorders. Next, we discuss challenges and good scientific practices in study design, image acquisition and analysis, and recent options to implement quality control. Finally, we discuss choices related to statistical analysis and interpretation of results. We call for greater completeness and transparency in the reporting of methods to advance understanding of structural brain alterations in neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Neuroimagen , Adolescente , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos del Neurodesarrollo/diagnóstico por imagen , Neuroimagen/métodos
16.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34415322

RESUMEN

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Asunto(s)
Alelos , Variación Genética/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Antígenos de Histocompatibilidad Menor/genética , Trastornos del Neurodesarrollo/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Leucocitos Mononucleares/fisiología , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje
17.
Neuroimage ; 231: 117828, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549754

RESUMEN

Approximately one in five children worldwide suffers from childhood malnutrition and its complications, including increased susceptibility to inflammation and infectious diseases. Due to improved early interventions, most of these children now survive early malnutrition, even in low-resource settings (LRS). However, many continue to exhibit neurodevelopmental deficits, including low IQ, poor school performance, and behavioral problems over their lifetimes. Most studies have relied on neuropsychological tests, school performance, and mental health and behavioral measures. Few studies, in contrast, have assessed brain structure and function, and to date, these have mainly relied on low-cost techniques, including electroencephalography (EEG) and evoked potentials (ERP). The use of more advanced methods of neuroimaging, including magnetic resonance imaging (MRI) and functional near-infrared spectroscopy (fNIRS), has been limited by cost factors and lack of availability of these technologies in developing countries, where malnutrition is nearly ubiquitous. This report summarizes the current state of knowledge and evidence gaps regarding childhood malnutrition and the study of its impact on neurodevelopment. It may help to inform the development of new strategies to improve the identification, classification, and treatment of neurodevelopmental disabilities in underserved populations at the highest risk for childhood malnutrition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Desnutrición/diagnóstico por imagen , Desnutrición/epidemiología , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/epidemiología , Neuroimagen/métodos , Niño , Electroencefalografía/métodos , Electroencefalografía/tendencias , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Desnutrición/psicología , Trastornos del Neurodesarrollo/psicología , Neuroimagen/tendencias , Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/tendencias
18.
Neurobiol Dis ; 158: 105453, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314857

RESUMEN

Neurodevelopmental disorders such as those linked to intellectual disabilities or autism spectrum disorder are thought to originate in part from genetic defects in synaptic proteins. Single gene mutations linked to synapse dysfunction can broadly be separated in three categories: disorders of transcriptional regulation, disorders of synaptic signaling and disorders of synaptic scaffolding and structures. The recent developments in super-resolution imaging technologies and their application to synapses have unraveled a complex nanoscale organization of synaptic components. On the one hand, part of receptors, adhesion proteins, ion channels, scaffold elements and the pre-synaptic release machinery are partitioned in subsynaptic nanodomains, and the respective organization of these nanodomains has tremendous impact on synaptic function. For example, pre-synaptic neurotransmitter release sites are partly aligned with nanometer precision to postsynaptic receptor clusters. On the other hand, a large fraction of synaptic components is extremely dynamic and constantly exchanges between synaptic domains and extrasynaptic or intracellular compartments. It is largely the combination of the exquisitely precise nanoscale synaptic organization of synaptic components and their high dynamic that allows the rapid and profound regulation of synaptic function during synaptic plasticity processes that underlie adaptability of brain function, learning and memory. It is very tempting to speculate that genetic defects that lead to neurodevelopmental disorders and target synaptic scaffolds and structures mediate their deleterious impact on brain function through perturbing synapse nanoscale dynamic organization. We discuss here how applying super-resolution imaging methods in models of neurodevelopmental disorders could help in addressing this question.


Asunto(s)
Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/fisiopatología , Sinapsis/patología , Animales , Trastorno del Espectro Autista , Humanos , Trastornos del Neurodesarrollo/diagnóstico por imagen , Neuroimagen
19.
J Pediatr ; 239: 117-125.e6, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34454953

RESUMEN

OBJECTIVES: To compare the term equivalent brain magnetic resonance imaging (MRI) findings between erythropoietin (Epo) treated and placebo control groups in infants 240/7-276/7 weeks of gestational age and to assess the associations between MRI findings and neurodevelopmental outcomes at 2 years corrected age. STUDY DESIGN: The association between brain abnormality scores and Bayley Scales of Infant Development, Third Edition at 2 years corrected age was explored in a subset of infants enrolled in the Preterm Erythropoietin Neuroprotection Trial. Potential risk factors for neurodevelopmental outcomes such as treatment assignment, recruitment site, gestational age, inpatient complications, and treatments were examined using generalized estimating equation models. RESULTS: One hundred ten infants were assigned to Epo and 110 to placebo groups. 27% of MRI scans were rated as normal, and 60%, 10%, and 2% were rated as having mild, moderate, or severe abnormality. Brain abnormality scores did not significantly differ between the treatment groups. Factors that increased the risk of higher brain injury scores included intubation; bronchopulmonary dysplasia; retinopathy of prematurity; opioid, benzodiazepine, or antibiotic treatment >7 days; and periventricular leukomalacia or severe intraventricular hemorrhage diagnosed on cranial ultrasound. Increased global brain abnormality and white matter injury scores at term equivalent were associated with reductions in cognitive, motor, and language abilities at 2 years of corrected age. CONCLUSIONS: Evidence of brain injury on brain MRIs obtained at term equivalent correlated with adverse neurodevelopmental outcomes as assessed by the Bayley Scales of Infant and Toddler Development, Third Edition at 2 years corrected age. Early Epo treatment had no effect on the MRI brain injury scores compared with the placebo group.


Asunto(s)
Encéfalo/diagnóstico por imagen , Trastornos del Neurodesarrollo/diagnóstico por imagen , Neuroprotección , Encéfalo/patología , Preescolar , Método Doble Ciego , Eritropoyetina , Femenino , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/patología
20.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32515017

RESUMEN

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.3/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Canales de Sodio/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Feto/diagnóstico por imagen , Variación Genética/genética , Células HEK293 , Humanos , Lactante , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA