RESUMEN
Triatoma maculata (Hemiptera, Reduviidae, Triatominae) occurs across dry-to-semiarid ecoregions of northern South America, where it transmits Trypanosoma cruzi, causative agent of Chagas disease. Using 207 field-caught specimens from throughout the species' range, mitochondrial(mt) DNA sequence data, and cytogenetics, we investigated inter-population genetic diversity and the phylogenetic affinities of T. maculata. Mitochondrial DNA sequence analyses (cytb and nd4) disclosed a monophyletic T. maculata clade encompassing three distinct geographic groups: Roraima formation (Guiana shield), Orinoco basin, and Magdalena basin (trans-Andean). Between-group cytb distances (11.0-12.8%) were larger than the ~7.5% expected for sister Triatoma species; the most recent common ancestor of these T. maculata groups may date back to the late Miocene. C-heterochromatin distribution and the sex-chromosome location of 45S ribosomal DNA clusters both distinguished Roraima bugs from Orinoco and Magdalena specimens. Cytb genealogies reinforced that T. maculata is not sister to Triatoma pseudomaculata and probably represents an early (middle-late Miocene) offshoot of the 'South American Triatomini lineage'. In sum, we report extensive genetic diversity and deep phylogeographic structuring in T. maculata, suggesting that it may consist of a complex of at least three sibling taxa. These findings have implications for the systematics, population biology, and perhaps medical relevance of T. maculata sensu lato.
Asunto(s)
Enfermedad de Chagas , Triatoma , Trypanosoma cruzi , Animales , Triatoma/genética , Filogenia , Enfermedad de Chagas/veterinaria , Trypanosoma cruzi/genética , ADN Mitocondrial/genética , Análisis Citogenético/veterinariaRESUMEN
Trypanosoma cruzi, the etiologic agent of American trypanosomiasis, is a vector-borne zoonotic parasite which has been little studied regarding its infection in domestic animals. In this study, we evaluated the occurrence of natural infection by T. cruzi in farm animals using molecular markers and phylogenetic analysis in blood clot samples of 60 sheep (Ovis aires), 22 goats (Capra hircus), and 14 horses (Equus caballus) in eight municipalities located in an infection risk area in the state of Rio Grande do Norte (RN), Northeast Region of Brazil. Trypanosoma spp. infection was identified by amplifying the rRNA 18S SSU gene in 48.9% of the samples. The SH022 sample showed 99.8% similarity with the Y strain of T. cruzi in phylogeny, grouped in the DTU II clade. Blood clots of sheep, goats, and horses detected T. cruzi kDNA in 28.3% (17/60), 22.7% (5/22), and 15.4% (2/14) of the samples, respectively. These animals were distributed in the three studied mesoregions throughout the state of RN. The identification of natural infection in domestic animals contributes to expand the epidemiological transmission scenario in an area where T. brasiliensis is the main vector.
Asunto(s)
Enfermedad de Chagas , Triatoma , Trypanosoma cruzi , Animales , Ovinos , Trypanosoma cruzi/genética , Animales Domésticos/parasitología , Brasil/epidemiología , Filogenia , Ciudades , Insectos Vectores/parasitología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Enfermedad de Chagas/parasitología , Cabras , Triatoma/genéticaRESUMEN
BACKGROUND: Triatoma infestans is the main vector of Chagas disease in the Americas, currently transmitting it in Argentina, Paraguay, and Bolivia. Many T. infestans populations present insecticide resistance, reducing the efficiency of control campaigns. Alternative vector control methods are needed, and molecular targets mediating fundamental physiological processes can be a promising option to manipulate kissing bug behavior. Therefore, it is necessary to characterize the main sensory targets, as well as to determine whether they are modulated by physiological factors. In order to identify gene candidates potentially mediating host cue detection, the antennal transcripts of T. infestans fifth instar larvae were sequenced and assembled. Besides, we evaluated whether a blood meal had an effect on transcriptional profiles, as responsiveness to host-emitted sensory cues depends on bug starvation. RESULTS: The sensory-related gene families of T. infestans were annotated (127 odorant receptors, 38 ionotropic receptors, 11 gustatory receptors, 41 odorant binding proteins, and 25 chemosensory proteins, among others) and compared to those of several other hemipterans, including four triatomine species. Several triatomine-specific lineages representing sensory adaptations developed through the evolution of these blood-feeding heteropterans were identified. As well, we report here various conserved sensory gene orthogroups shared by heteropterans. The absence of the thermosensor pyrexia, of pickpocket receptor subfamilies IV and VII, together with clearly expanded takeout repertoires, are revealed features of the molecular bases of heteropteran antennal physiology. Finally, out of 2,122 genes whose antennal expression was significantly altered by the ingestion of a blood meal, a set of 41 T. infestans sensory-related genes (9 up-regulated; 32 down-regulated) was detected. CONCLUSIONS: We propose that the set of genes presenting nutritionally-triggered modulation on their expression represent candidates to mediate triatomine host-seeking behavior. Besides, the triatomine-specific gene lineages found represent molecular adaptations to their risky natural history that involves stealing blood from an enormously diverse set of vertebrates. Heteropteran gene orthogroups identified may represent unknown features of the sensory specificities of this largest group of hemipteroids. Our work is the first molecular characterization of the peripheral modulation of sensory processes in a non-dipteran vector of human disease.
Asunto(s)
Enfermedad de Chagas , Triatoma , Animales , Humanos , Triatoma/genética , Triatoma/metabolismo , Transcriptoma , Bolivia , Resistencia a los InsecticidasRESUMEN
Triatoma mexicana is an important vector of Trypanosoma cruzi-the etiological agent of Chagas disease. This triatomine species occurs in central Mexico, but little is known about its genetic variability. Using Cyt-b gene as a genetic marker, in this study, we determined the population genetic structure of T. mexicana collected from the States of Hidalgo, Guanajuato, and Queretaro where populations are largely peridomiciliary. A Bayesian approach was performed for the design of phylogenies, median-joining networks, and clustering among populations of T. mexicana. Our results show that the Hidalgo population was the most distinct, with the highest genetic and haplotypic variation (Hd = 0.963, π = 0.06129, and ɵ = 0.05469). Moderate gene flow (Nm) was determined among populations of Hidalgo and Queretaro. Populations from the three states showed differentiation (FST) values ranging from 0.22 to 0.3, suggesting an important genetic differentiation. The phylogenetic analysis showed the presence of five well-defined groups, as well as the haplotype network, where 24 haplotypes were observed forming five haplogroups with high mutational steps among them: 68 (Hgo-W2), 26 (Qto), 59 (Hgo-M), 44 (Hgo-W1), and 46 (Gto). Genetic isolation was apparently inferred in the Guanajuato population; however, the Mantel test did not show correlation between genetic (FST) and geographic (km) distances (p = 0.05). The STRUCTURE analyses showed seven genetic clusters and it was observed that a single cluster predominates in each sampled location. However, genetic admixture was detected in four localities. Our results show evidence that there are multiple species within the collected sampling area.
Asunto(s)
Enfermedad de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animales , Teorema de Bayes , Variación Genética , Insectos Vectores , México/epidemiología , Filogenia , Triatoma/genética , Trypanosoma cruzi/genéticaRESUMEN
The insecticide resistance in Triatoma infestans (Klug, 1834) was detected in different areas of its geographical distribution. The mechanisms of resistance involved can affect different biological processes in addition to toxicological ones. Previous studies showed that reproductive efficiency was modified in resistant females compared to susceptible ones. The objective of this study was to compare the autogenic capacity and subsequent reproductive potential between deltamethrin-resistant and susceptible T. infestans. For each toxicological phenotype, pairs were formed between unfed adult females and recently fed adult male, which were separated after confirming copulation. Females were observed weekly until death, and reproductive parameters (initiation of mating, initiation of oviposition, fecundity, fertility and period between mating and initiation of oviposition) were recorded. Females from both toxicological phenotypes showed autogenic capacity. However, a lower proportion of deltamethrin-resistant unfed females laid eggs. Autogenic females showed a higher nutritional status than non-autogenic ones. No other differences in reproductive parameters were found between resistant and susceptible autogenic females. The possible mechanisms underlying the differences observed and their consequences on the spread of resistance are discussed. This is the first report describing the effect of pyrethroid resistance on T. infestans autogeny.
Asunto(s)
Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Triatoma/efectos de los fármacos , Animales , Femenino , Fertilidad/efectos de los fármacos , Masculino , Oviposición/efectos de los fármacos , Reproducción/efectos de los fármacos , Triatoma/genética , Triatoma/fisiologíaRESUMEN
Metabolic resistance to chemical insecticides implies a greater capacity to detoxify insecticides due to an increase in the expression of genes and/or in the activity of enzymes related to detoxification metabolism. The insect integument is known to participate as the cuticular penetration factor of resistance, but recently this tissue was also linked with metabolic resistance due to P450-dependent detoxification in the Chagas disease vector Triatoma infestans. The objectives of this study were i) to name and classify all P450s known to date in T. infestans, ii) to characterise one of them, CYP4PR1, representing the first member of a new cytochrome P450 subfamily described in insects, and iii) to investigate the potential role of CYP4PR1 in metabolic resistance to deltamethrin in T. infestans. We found that CYP4PR1 is expressed almost exclusively in the integument tissue, and its expression was not induced by deltamethrin. Knockdown of CYP4PR1 by RNA interference in pyrethroid-resistant nymphs caused a significant increment in insect mortality after topical application of two different doses of deltamethrin. These results support the role of the integument on metabolic resistance and suggest that CYP4PR1 might contribute to resistance in integument tissue of T. infestans.
Asunto(s)
Insecticidas , Piretrinas , Triatoma , Animales , Sistema Enzimático del Citocromo P-450/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Triatoma/genéticaRESUMEN
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.
Asunto(s)
Enfermedad de Chagas/genética , Elementos Transponibles de ADN/genética , ADN Satélite/genética , Rhodnius/genética , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Biología Computacional , Humanos , Anotación de Secuencia Molecular , Rhodnius/parasitología , Rhodnius/patogenicidad , Triatoma/genética , Triatoma/parasitología , Secuenciación Completa del GenomaRESUMEN
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector-borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next-generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.
Asunto(s)
Enfermedad de Chagas , Microbioma Gastrointestinal , Triatoma , Trypanosoma cruzi , Animales , Microbioma Gastrointestinal/genética , Louisiana , Triatoma/genética , Trypanosoma cruzi/genéticaRESUMEN
BACKGROUND: Triatoma brasiliensis Neiva, 1911 is the main vector of Trypanosoma cruzi in the caatinga of Northeastern Brazil. Despite of its epidemiological relevance, there are few studies on its genetic variability. Using microsatellite markers, we characterized the variability and dynamics of infestation and reinfestation of T. brasiliensis after residual insecticide spraying in five surveys conducted in a well-defined rural area located in the municipality of Tauá, Ceará, between 2009 and 2015. We evaluated: (1) general variability among local of captures; (2) variability along the time analysis (2009, 2010 and 2015); (3) and reinfestation process. RESULTS: On the analysis (1) global and pairwise FST values suggested absence of clusters among the area. AMOVA indicated that total variation is mainly represented by individual differences. Absence of clustering indicates a panmitic unit, with free gene flow. For (2), Pairwise FST indicated alterations in the genetic profile of the triatomines along the time. (3) Analysis of the reinfestation process showed that the domiciliary units investigated had different sources of infestation despite of its proximity. CONCLUSIONS: Observed homogeneity can be explained by the great dispersal capacity of T. brasiliensis, overlapping the different environments. Persistent house infestation in Tauá may be attributed to the occurrence of postspraying residual foci and the invasion of triatomines from their natural habitats.
Asunto(s)
Variación Genética , Genética de Población , Repeticiones de Microsatélite , Triatoma/genética , Animales , Brasil , Flujo Génico , Genotipo , Control de Insectos , Insectos Vectores/genética , Estudios LongitudinalesRESUMEN
The genetic structure of natural populations offers insight into the complexities of their dynamics, information that can be relevant to vector control strategies. Microsatellites are useful neutral markers to investigate the genetic structure and gene flow in Triatoma infestans, one of the main vectors of Chagas disease in South America. Recently, a heterogeneous pyrethroid-resistant hotspot was found in the Argentine Gran Chaco, characterized by the highest levels of deltamethrin resistance found at the present time. We applied population genetics analyses to microsatellite and village data and search for associations between the genetic variability and the heterogeneous toxicological pattern previously found. We genotyped 10 microsatellite loci in 67 T. infestans from 6 villages with no, low, and high pyrethroid resistance. The most genetically diverse populations were those susceptible or with low values of resistance. In contrast, high-resistance populations had lower herozygosity and some monomorphic loci. A negative association was found between variability and resistant ratios. Global and pairwise FSTs indicated significant differentiation between populations. The only susceptible population was discriminated in all the performed studies. Low-resistance populations were also differentiated by a discriminant analysis of principal components (DAPC) and were composed mostly by the same two genetic clusters according to STRUCTURE Bayesian algorithm. Individuals from the high-resistance populations were overlapped in the DAPC and shared significant proportions of a genetic cluster. These observations suggest that the resistant populations might have a common origin, although more genetic markers and samples are required to test this hypothesis more rigorously.
Asunto(s)
Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Triatoma/genética , Animales , Argentina/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Variación Genética , Repeticiones de Microsatélite/genéticaRESUMEN
Constitutive heterochromatin typically exhibits low gene density and is commonly found adjacent or close to the nuclear periphery, in contrast to transcriptionally active genes concentrated in the innermost nuclear region. In Triatoma infestans cells, conspicuous constitutive heterochromatin forms deeply stained structures named chromocenters. However, to the best of our knowledge, no information exists regarding whether these chromocenters acquire a precise topology in the cell nuclei or whether their 18S rDNA, which is important for ribosome function, faces the nuclear center preferentially. In this work, the spatial distribution of fluorescent Feulgen-stained chromocenters and the distribution of their 18S rDNA was analyzed in Malpighian tubule cells of T. infestans using confocal microscopy. The chromocenters were shown to be spatially positioned relatively close to the nuclear periphery, though not adjacent to it. The variable distance between the chromocenters and the nuclear periphery suggests mobility of these bodies within the cell nuclei. The distribution of 18S rDNA at the edge of the chromocenters was not found to face the nuclear interior exclusively. Because the genome regions containing 18S rDNA in the chromocenters also face the nuclear periphery, the proximity of the chromocenters to this nuclear region is not assumed to be associated with overall gene silencing.
Asunto(s)
Núcleo Celular , Heterocromatina , Triatoma/genética , Animales , Cromatina , ADN Ribosómico , MasculinoRESUMEN
The assassin bug, Sphedanolestes impressicollis (Hemiptera: Reduviidae), is widely distributed in East Asia. It is an ideal model for evaluating the effects of climatic fluctuation and geographical events on the distribution patterns of East Asian reduviids. Here, we used two mitochondrial genes and one nuclear gene to investigate the phylogeographic pattern of the assassin bug based on comprehensive sampling in China, Japan, South Korea, Vietnam, and Laos. High levels of genetic differentiation were detected among the geographic populations classified into the northern and southern groups. A significant correlation was detected between genetic and geographical distances. The East China Sea land bridge served as a "dispersal corridor" during Pleistocene glaciation. The estimated divergence time indicated that the northern group may have separated from the eastern Chinese populations when the sea level rapidly rose during the "Ryukyu Coral Sea Stage" and the East China Sea land bridge was completely submerged. Demographic history and ecological niche modeling suggested that appropriate climatic conditions may have accounted for the rapid spread across the Korean Peninsula and Japan during the late Pleistocene. Our study underscores the pivotal roles of the Pleistocene sea level changes and climatic fluctuations in determining the distribution patterns of East Asian reduviids.
Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Triatoma/genética , Animales , Clima , Ecosistema , Asia Oriental , Filogenia , Filogeografía/métodosRESUMEN
BACKGROUND: Chagas disease is a parasitic infection caused by Trypanosoma cruzi. It is an important public health problem affecting around seven to eight million people in the Americas. A large number of hematophagous triatomine insect species, occupying diverse natural and human-modified ecological niches transmit this disease. Triatomines are long-living hemipterans that have evolved to explode different habitats to associate with their vertebrate hosts. Understanding the molecular basis of the extreme physiological conditions including starvation tolerance and longevity could provide insights for developing novel control strategies. We describe the normalized cDNA, full body transcriptome analysis of three main vectors in North, Central and South America, Triatoma pallidipennis, T. dimidiata and T. infestans. RESULTS: Two-thirds of the de novo assembled transcriptomes map to the Rhodnius prolixus genome and proteome. A Triatoma expansion of the calycin family and two types of protease inhibitors, pacifastins and cystatins were identified. A high number of transcriptionally active class I transposable elements was documented in T. infestans, compared with T. dimidiata and T. pallidipennis. Sequence identity in Triatoma-R. prolixus 1:1 orthologs revealed high sequence divergence in four enzymes participating in gluconeogenesis, glycogen synthesis and the pentose phosphate pathway, indicating high evolutionary rates of these genes. Also, molecular evidence suggesting positive selection was found for several genes of the oxidative phosphorylation I, III and V complexes. CONCLUSIONS: Protease inhibitors and calycin-coding gene expansions provide insights into rapidly evolving processes of protease regulation and haematophagy. Higher evolutionary rates in enzymes that exert metabolic flux control towards anabolism and evidence for positive selection in oxidative phosphorylation complexes might represent genetic adaptations, possibly related to prolonged starvation, oxidative stress tolerance, longevity, and hematophagy and flight reduction. Overall, this work generated novel hypothesis related to biological adaptations to extreme physiological conditions and diverse ecological niches that sustain Chagas disease transmission.
Asunto(s)
Enfermedad de Chagas/parasitología , Metabolismo Energético , Genómica , Insectos Vectores/genética , Transcriptoma , Triatoma/genética , Adaptación Fisiológica , Animales , Evolución Biológica , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Ecología , Genoma de los Insectos , Insectos Vectores/clasificación , Insectos Vectores/metabolismo , Insectos Vectores/parasitología , Familia de Multigenes , América del Sur , Triatoma/clasificación , Triatoma/metabolismo , Triatoma/parasitologíaRESUMEN
To date, the phylogeny of Triatoma dimidiata sensu lato (s. l.) (Hemiptera: Reduviidae: Triatominae), the epidemiologically most important Chagas disease vector in Central America and a secondary vector in Mexico and northern South America, has only been investigated by one multi-copy nuclear gene (Internal Transcribed Spacer - 2) and a few mitochondrial genes. We examined 450 specimens sampled across most of its native range from Mexico to Ecuador using reduced representation next-generation sequencing encompassing over 16,000 single nucleotide polymorphisms (SNPs). Using a combined phylogenetic and species delimitation approach we uncovered two distinct species, as well as a well-defined third group that may contain multiple species. The findings are discussed with respect to possible drivers of diversification and the epidemiological importance of the distinct species and groups.
Asunto(s)
Variación Genética , Genoma , Triatoma/genética , Animales , América Central , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Genes Mitocondriales , Humanos , Insectos Vectores/genética , Filogenia , Polimorfismo de Nucleótido Simple , Triatoma/clasificación , Triatoma/parasitología , Trypanosoma cruzi/fisiologíaRESUMEN
Physically disturbed Triatoma infestans (Hemiptera: Reduviidae) adults, as well as adults of other Chagas' disease vectors, secrete a mix of volatile organic compounds (VOCs) with alarm and possible sexual and defence functions. The aim of the present research was to test whether infection with the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales: Clavicipitaceae) has an effect on VOC secretion in disturbed T. infestans and on the expression of two genes (Ti-brnq and Ti-bckdc) potentially involved in VOC biosynthesis. The volatiles released by insects at different time periods after fungal treatment were identified and their relative amounts measured. Isobutyric acid was the most abundant volatile found in both healthy and fungus-infected insects and underwent no significant relative changes through the infection process. The secretion of propionic acid, however, was significantly higher at 1-4 days post-infection (d.p. i.) compared with that in controls. A slight induction of both Ti-brnq and Ti-bckdc genes was found by real-time polymerase chain reaction at 4 d.p. i., with expression values reaching up to three-fold those in controls. The early stages of fungal infection seem to affect the composition of the alarm pheromone by changing the expression pattern of both genes analysed. These results help to elucidate the impact of fungal infections on the chemical ecology of triatomine bugs.
Asunto(s)
Beauveria/fisiología , Ácidos Grasos Volátiles/metabolismo , Proteínas de Insectos/genética , Triatoma/metabolismo , Triatoma/microbiología , Animales , Ácidos Grasos Volátiles/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/genética , Insectos Vectores/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Triatoma/genéticaRESUMEN
Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.
Asunto(s)
Insectos Vectores/genética , Secuencias Repetitivas de Ácidos Nucleicos , Rhodnius/genética , Triatoma/genética , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Bandeo Cromosómico , ADN Satélite , Evolución Molecular , Genoma de los Insectos , Genómica/métodos , Hibridación Fluorescente in Situ , Insectos Vectores/parasitología , Rhodnius/parasitología , Triatoma/parasitología , Trypanosoma cruziRESUMEN
Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.
Asunto(s)
Enfermedad de Chagas , Vectores de Enfermedades , Genoma de los Insectos/genética , Genoma Mitocondrial/genética , Triatoma/genética , Secuenciación Completa del Genoma , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Variación Genética , Humanos , Sistemas de Lectura Abierta/genética , Filogenia , ARN Ribosómico , ARN de TransferenciaRESUMEN
In spite of long-term efforts to eliminate Triatoma infestans (Klug 1834) from Brazil, residual foci still persist in the states of Bahia and Rio Grande do Sul. Data on the genetic variability and structuring of these populations are however lacking. Using nine microsatellite loci, we characterized one residual T. infestans population from Bahia and four from Rio Grande do Sul, and compared them with bugs originally from an older focus in São Paulo; 224 bugs were genotyped. The number of alleles per locus ranged from 5 to 11. Observed and expected heterozygosities per locus ranged, respectively, from 0 to 0.786 and from 0 to 0.764. Significant departures from Hardy-Weinberg equilibrium, mainly due to heterozygote deficits, were detected in all loci and in most populations. Global indices estimated by AMOVA were: Fis was 0.37; Fst was 0.28; and Fit was 0.55; overall indices with p = 0.00 indicated substantial differentiation. Inter-population Fst ranged from 0.118 to 0.562, suggesting strong genetic structuring and little to no gene flow among populations. Intra-population Fis ranged from 0.301 to 0.307. Inbreeding was apparent in all populations except that from Bahia-which might be either linked by gene flow to nearby unsampled populations or part of a relatively large local population. The overall pattern of strong genetic structuring among pyrethroid-susceptible residual T. infestans populations suggests that their persistence is probably due to operational control failures. Detection and elimination of such residual foci is technically feasible and must become a public health priority in Brazil.
Asunto(s)
Insectos Vectores/genética , Repeticiones de Microsatélite , Triatoma/genética , Alelos , Animales , Brasil , Variación Genética , Genotipo , GeografíaRESUMEN
Triatoma infestans is an insect of subfamily Triatominae (Hemiptera: Reduviidae) and an important vector of Trypanosoma cruzi, the etiologic agent of human Chagas disease. In this work we reported a transcriptome assembly and annotation of T. infestans heads obtained by Next Generation Sequencing (NGS) technologies.
Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/genética , Triatoma/genética , AnimalesRESUMEN
Triatoma sordida is a species that transmits Trypanosoma cruzi to humans. In Brazil, T. sordida currently deserves special attention because of its wide distribution, tendency to invade domestic environments and vectorial competence. For the planning and execution of control protocols to be effective against Triatominae, they must consider its population structure. In this context, this study aimed to characterise the genetic variability of T. sordida populations collected in areas with persistent infestations from Minas Gerais, Brazil. Levels of genetic variation and population structure were determined in peridomestic T. sordida by sequencing a polymorphic region of the mitochondrial cytochrome b gene. Low nucleotide and haplotype diversity were observed for all 14 sampled areas; π values ranged from 0.002-0.006. Most obtained haplotypes occurred at low frequencies, and some were exclusive to only one of the studied populations. Interpopulation genetic diversity analysis revealed strong genetic structuring. Furthermore, the genetic variability of Brazilian populations is small compared to that of Argentinean and Bolivian specimens. The possible factors related to the reduced genetic variability and strong genetic structuring obtained for studied populations are discussed in this paper.