Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 295(13): 4341-4349, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32029474

RESUMEN

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Resistencia a la Enfermedad/genética , Globósidos/genética , Receptores de Hidrocarburo de Aril/genética , Serina C-Palmitoiltransferasa/genética , Esfingolípidos/biosíntesis , Trihexosilceramidas/genética , Animales , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genoma Humano/genética , Células HeLa , Humanos , Metabolismo de los Lípidos/genética , Lípidos/biosíntesis , Lípidos/genética , Ratones , Ratones Noqueados , Toxina Shiga/farmacología , Transducción de Señal/genética , Esfingolípidos/genética
2.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572752

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder, depending on defects in alpha-galactosidase A (GAL) activity. At the clinical level, FD shows a high phenotype variability. Among them, cardiovascular dysfunction is often recurrent or, in some cases, is the sole symptom (cardiac variant) representing the leading cause of death in Fabry patients. The existing therapies, besides specific symptomatic treatments, are mainly based on the restoration of GAL activity. Indeed, mutations of the galactosidase alpha gene (GLA) cause a reduction or lack of GAL activity leading to globotriaosylceramide (Gb3) accumulation in several organs. However, several other mechanisms are involved in FD's development and progression that could become useful targets for therapeutics. This review discusses FD's cardiovascular phenotype and the last findings on molecular mechanisms that accelerate cardiac cell damage.


Asunto(s)
Enfermedades Cardiovasculares/genética , Enfermedad de Fabry/genética , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/patología , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/patología , Humanos , Inflamación/genética , Inflamación/patología , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fenotipo , Trihexosilceramidas/genética , alfa-Galactosidasa/genética
3.
Hum Mol Genet ; 27(19): 3392-3403, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982630

RESUMEN

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene coding for α-galactosidase A (α-GalA). The deleterious mutations lead to accumulation of α-GalA substrates, including globotriaosylceramide (Gb3) and globotriaosylsphingosine. Progressive glycolipid storage results in cellular dysfunction, leading to organ damage and clinical disease, i.e. neuropathic pain, impaired renal function and cardiomyopathy. Many Fabry patients are treated by bi-weekly intravenous infusions of replacement enzyme. While the only available oral therapy is an α-GalA chaperone, which is indicated for a limited number of patients with specific 'amenable' mutations. Lucerastat is an orally bioavailable inhibitor of glucosylceramide synthase (GCS) that is in late stage clinical development for Fabry disease. Here we investigated the ability of lucerastat to lower Gb3, globotriaosylsphingosine and lysosomal staining in cultured fibroblasts from 15 different Fabry patients. Patients' cells included 13 different pathogenic variants, with 13 cell lines harboring GLA mutations associated with the classic disease phenotype. Lucerastat dose dependently reduced Gb3 in all cell lines. For 13 cell lines the Gb3 data could be fit to an IC50 curve, giving a median IC50 [interquartile range (IQR)] = 11 µM (8.2-18); the median percent reduction (IQR) in Gb3 was 77% (70-83). Lucerastat treatment also dose dependently reduced LysoTracker Red staining of acidic compartments. Lucerastat's effects in the cell lines were compared to those with current treatments-agalsidase alfa and migalastat. Consequently, the GCS inhibitor lucerastat provides a viable mechanism to reduce Gb3 accumulation and lysosome volume, suitable for all Fabry patients regardless of genotype.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/tratamiento farmacológico , Glucosiltransferasas/genética , alfa-Galactosidasa/genética , 1-Desoxinojirimicina/farmacología , Línea Celular , Enfermedad de Fabry/genética , Enfermedad de Fabry/fisiopatología , Femenino , Fibroblastos/efectos de los fármacos , Genotipo , Glucosiltransferasas/antagonistas & inhibidores , Humanos , Riñón/efectos de los fármacos , Riñón/fisiopatología , Lisosomas/genética , Masculino , Mutación/genética , Trihexosilceramidas/genética
4.
Glycobiology ; 29(3): 260-268, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476082

RESUMEN

Alteration of glycosphingolipid (GSL) expression plays key roles in the pathogenesis and pathophysiology of many important human diseases, including cancer, diabetes and glycosphingolipidosis. Inflammatory processes are involved in development and progression of diabetic nephropathy, a major complication of type 2 diabetes mellitus. GSLs are known to play roles in inflammatory responses in various diseases, and levels of renal GSLs are elevated in mouse models of diabetic nephropathy; however, little is known regarding the pathophysiological role of these GSLs in this disease process. We studied proinflammatory activity of GSLs in diabetic nephropathy using spontaneously diabetic mouse strain KK. Mice were fed a high-fat diet (HFD) (60% kcal from fat) or normal diet (ND) (4.6% kcal from fat) for a period of 8 wk. HFD-feeding resulted in quantitative and qualitative changes of renal globo-series GSLs (particularly Gb3Cer), upregulation of TNF-α, and induction of renal inflammation. Gb3Cer/Gb4Cer treatment enhanced inflammatory responses via TLR4 in TLR4/MD-2 complex expressing cells, including HEK293T, mouse bone marrow-derived macrophages (BMDMs) and human monocytes. Our findings suggest that HFD-induced increase of Gb3Cer/Gb4Cer positively modulate TLR4-mediated inflammatory response, and that such GSLs play an important pathophysiological role in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/genética , Glicoesfingolípidos/genética , Inflamación/genética , Receptor Toll-Like 4/genética , Trihexosilceramidas/genética , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Glicoesfingolípidos/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Transducción de Señal/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/genética
5.
Genet Med ; 21(1): 224-232, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29875425

RESUMEN

PURPOSE: Evaluation standards and treatment initiation timing have been debated for a long time, particularly for late-onset Fabry disease (FD), because of its slow progression. However, early initiation of enzyme replacement therapy (ERT) for FD could be effective in stabilizing the disease progression and potentially preventing irreversible organ damage. We aimed to examine globotriaosylceramide (Gb3) deposits in patients' endomyocardial biopsies to understand the early pathogenesis of FD cardiomyopathy. METHODS: Immunofluorescent (IF) staining of Gb3 and lysosomal-associated membrane protein 1 (LAMP-1) was performed on endomyocardial biopsies of patients suspected of Fabry cardiomyopathy who had negative or only slight Gb3 accumulation determined by toluidine blue staining and electron microscopic examination. RESULTS: The IF staining results revealed that all patients examined had abundant Gb3 accumulation in their cardiomyocytes, including the ones who are negative for inclusion bodies. Furthermore, we found that early Gb3 deposits were mostly confined within lysosomes, while they appeared extralysosomally at a later stage. CONCLUSION: A significant amount of lysosomal Gb3 deposits could be detected by IF staining in cardiac tissue before the formation of inclusion bodies, suggesting the cardiomyocytes might have been experiencing cellular stress and damage early on, before the appearance of typical pathological changes of FD during the disease progression.


Asunto(s)
Enfermedad de Fabry/diagnóstico , Globósidos/metabolismo , Lisosomas/metabolismo , Miocardio/metabolismo , Trihexosilceramidas/metabolismo , Adulto , Biopsia , Progresión de la Enfermedad , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/diagnóstico por imagen , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Técnica del Anticuerpo Fluorescente , Globósidos/genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/patología , Masculino , Persona de Mediana Edad , Miocardio/patología , Trihexosilceramidas/genética
6.
J Mol Cell Cardiol ; 121: 256-265, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30048710

RESUMEN

BACKGROUND: Fabry disease is an X-linked disease caused by mutations in α-galactosidase A (GLA); these mutations result in the accumulation of its substrates, mainly globotriaosylceramide (Gb3). The accumulation of glycosphingolipids induces pathogenic changes in various organs, including the heart, and Fabry cardiomyopathy is the most frequent cause of death in patients with Fabry disease. Existing therapies to treat Fabry disease have limited efficacy, and new approaches to improve the prognosis of patients with Fabry cardiomyopathy are required. METHODS AND RESULTS: We generated induced pluripotent stem cell (iPSC) lines from a female patient and her son. Each iPSC clone from the female patient showed either deficient or normal GLA activity, which could be used as a Fabry disease model or its isogenic control, respectively. Erosion of the inactivated X chromosome developed heterogeneously among clones, and mono-allelic expression of the GLA gene was maintained for a substantial period in a subset of iPSC clones. Gb3 accumulation was observed in iPSC-derived cardiomyocytes (iPS-CMs) from GLA activity-deficient iPSCs by mass-spectrometry and immunofluorescent staining. The expression of ANP was increased, but the cell surface area was decreased in iPS-CMs from the Fabry model, suggesting that cardiomyopathic change is ongoing at the molecular level in Fabry iPS-CMs. We also established an algorithm for selecting proper Gb3 staining that could be used for high-content analysis-based drug screening. CONCLUSIONS: We generated a Fabry cardiomyopathy model and a drug screening system by using iPS-CMs from a female Fabry patient. Drug screening using our system may help discover new drugs that would improve the prognosis of patients with Fabry cardiomyopathy.


Asunto(s)
Cardiomiopatías/genética , Evaluación Preclínica de Medicamentos , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/fisiopatología , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/fisiopatología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Pacientes , Trihexosilceramidas/genética , Inactivación del Cromosoma X/genética
7.
Genet Med ; 20(7): 754-759, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29227985

RESUMEN

PURPOSE: To test the hypothesis that undiagnosed patients with Fabry disease exist among patients affected by common heart disease. METHODS: Globotriaosylceramide in random whole urine using tandem mass spectroscopy, α-galactosidase A activity in dried blood spots, and next-generation sequencing of pooled or individual genomic DNA samples supplemented by Sanger sequencing. RESULTS: We tested 2,256 consecutive patients: 852 women (median age 65 years (19-95)) and 1,404 men (median age 65 years (21-92)). The primary diagnoses were coronary artery disease (n = 994), arrhythmia (n = 607), cardiomyopathy (n = 138), and valvular disease (n = 568). Urinary globotriaosylceramide was elevated in 15% of patients and 15 males had low α-galactosidase A activity. GLA variants found included R118C (n = 2), D83N, and D313Y (n = 7); IVS6-22 C>T, IVS4-16 A>G, IVS2+990C>A, 5'UTR-10 C>T (n = 4), IVS1-581 C>T, IVS1-1238 G>A, 5'UTR-30 G>A, IVS2+590C>T, IVS0-12 G>A, IVS4+68A>G, IVS0-10 C>T, IVS2-81-77delCAGCC, IVS2-77delC. Although the pathogenicity of several of these missense mutations and complex intronic haplotypes has been controversial, none of the patients screened in this study were diagnosed definitively with Fabry disease. CONCLUSION: This population of patients with common heart disease did not contain a substantial number of patients with undiagnosed Fabry disease. GLA gene sequencing is superior to urinary globotriaosylceramide or α-galactosidase A activity in the screening for Fabry disease.


Asunto(s)
Enfermedad de Fabry/diagnóstico , alfa-Galactosidasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Comorbilidad , ADN , Enfermedad de Fabry/epidemiología , Femenino , Cardiopatías/complicaciones , Cardiopatías/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Trihexosilceramidas/genética , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/metabolismo
8.
Glycobiology ; 27(1): 99-109, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558838

RESUMEN

Shiga toxin (Stx)-mediated injury to microvascular endothelial cells in the brain significantly contributes to the pathogenesis of the hemolytic-uremic syndrome caused by enterohemorrhagic Escherichia coli (EHEC). Stxs are AB5 toxins and the B-pentamers of the two major Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) expressed by human endothelial cells. Here we report on comprehensive structural analysis of the different lipoforms of Gb3Cer (Galα4Galß4Glcß1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß3Galα4Galß4Glcß1Cer, the less effective Stx receptor) of primary human brain microvascular endothelial cells and their association with lipid rafts. Detergent-resistant membranes (DRMs), obtained by sucrose density gradient ultracentrifugation, were used as lipid raft-analogous microdomains of the liquid-ordered phase and nonDRM fractions were employed as equivalents for the liquid-disordered phase of cell membranes. Structures of the prevalent lipoforms of Gb3Cer and Gb4Cer were those with Cer (d18:1, C16:0), Cer (d18:1, C22:0) and Cer (d18:1, C24:1/C24:0) determined by electrospray ionization mass spectrometry that was combined with thin-layer chromatography immunodetection using anti-Gb3Cer and anti-Gb4Cer antibodies as well as Stx1a and Stx2a subtypes. Association of Stx receptor GSLs was determined by co-localization with lipid raft-specific membrane protein flotillin-2 and canonical lipid raft marker sphingomyelin with Cer (d18:1, C16:0) and Cer (d18:1, C24:1/C24:0) in the liquid-ordered phase, whereas lyso-phosphatidylcholine was detectable exclusively in the liquid-disordered phase. Defining the precise microdomain structures of primary endothelial cells may help to unravel the initial mechanisms by which Stxs interact with their target cells and will help to develop novel preventive and therapeutic measures for EHEC-mediated diseases.


Asunto(s)
Globósidos/química , Receptores de Superficie Celular/química , Toxina Shiga I/química , Toxina Shiga II/química , Trihexosilceramidas/química , Anticuerpos/química , Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Cromatografía en Capa Delgada , Células Endoteliales/química , Escherichia coli/patogenicidad , Globósidos/genética , Glicoesfingolípidos/química , Glicoesfingolípidos/genética , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/genética , Receptores de Superficie Celular/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Trihexosilceramidas/genética
9.
Genet Med ; 18(12): 1181-1185, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27195818

RESUMEN

Fabry disease is caused by mutations in the GLA gene that lower α-galactosidase A activity to less than 25-30% of the mean normal level. Several GLA variants have been identified that are associated with relatively elevated residual α-galactosidase A. The challenge is to determine which GLA variants can cause clinical manifestations related to Fabry disease. Here, we review the various types of GLA variants and recommend that pathogenicity be considered only when associated with elevated globotriaosylceramide in disease-relevant organs and tissues as analyzed by mass spectrometry. This criterion is necessary to ensure that very costly and specific therapy is provided only when appropriate.Genet Med 18 12, 1181-1185.


Asunto(s)
Enfermedad de Fabry/genética , Trihexosilceramidas/genética , alfa-Galactosidasa/genética , Enfermedad de Fabry/patología , Humanos , Mutación , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/aislamiento & purificación
10.
Transfusion ; 54(7): 1831-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24417201

RESUMEN

BACKGROUND: Cells of the clinically important p histo-blood group phenotype lack P1, P(k) , and P glycosphingolipid antigens. All cases investigated so far are due to alterations in the 4-α-galactosyltransferase-encoding Exon 3 of A4GALT. Repetitive elements in the genome can mediate DNA rearrangements, the most abundant being the Alu family of repeats. STUDY DESIGN AND METHODS: The aim of this study was to determine the genetic basis of three p samples with intact A4GALT open reading frames, using long-range polymerase chain reaction (PCR) and sequencing. In addition, transcript measurements were performed with quantitative PCR. RESULTS: This is the first report of the p phenotype as the result of large deletions in A4GALT, comprising the proposed promoter and noncoding Exons 1 and 2a. The breakpoints were different in all three samples and revealed the presence of Alu or MIRb sequences directly flanking, or in close proximity to, all junctions. Furthermore, no A4GALT transcripts could be detected. CONCLUSION: In summary, our data elucidate a new explanation underlying the p phenotype, implicating the deleted regions of A4GALT as crucial for P1 and P(k) synthesis, possibly due to loss of binding sites for erythroid transcription factors. Furthermore, analysis of these regions will improve genetic blood group prediction.


Asunto(s)
Galactosiltransferasas/genética , Eliminación de Gen , Globósidos/deficiencia , Secuencias Reguladoras de Ácidos Nucleicos/genética , Trihexosilceramidas/deficiencia , Alelos , Secuencia de Bases , Antígenos de Grupos Sanguíneos/genética , Globósidos/genética , Humanos , Datos de Secuencia Molecular , Fenotipo , Trihexosilceramidas/genética
11.
Biochem J ; 456(3): 373-83, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24094090

RESUMEN

Fabry disease is a lysosomal storage disorder in which neutral glycosphingolipids, predominantly Gb3 (globotriaosylceramide), accumulate due to deficient α-Gal A (α-galactosidase A) activity. The GLAko (α-Gal A-knockout) mouse has been used as a model for Fabry disease, but it does not have any symptomatic abnormalities. In the present study, we generated a symptomatic mouse model (G3Stg/GLAko) by cross-breeding GLAko mice with transgenic mice expressing human Gb3 synthase. G3Stg/GLAko mice had high Gb3 levels in major organs, and their serum Gb3 level at 5-25 weeks of age was 6-10-fold higher than that in GLAko mice of the same age. G3Stg/GLAko mice showed progressive renal impairment, with albuminuria at 3 weeks of age, decreased urine osmolality at 5 weeks, polyuria at 10 weeks and increased blood urea nitrogen at 15 weeks. The urine volume and urinary albumin concentration were significantly reduced in the G3Stg/GLAko mice when human recombinant α-Gal A was administered intravenously. These data suggest that Gb3 accumulation is a primary pathogenic factor in the symptomatic phenotype of G3Stg/GLAko mice, and that this mouse line is suitable for studying the pathogenesis of Fabry disease and for preclinical studies of candidate therapies.


Asunto(s)
Enfermedad de Fabry/metabolismo , Galactosiltransferasas/metabolismo , Trihexosilceramidas/biosíntesis , alfa-Galactosidasa/farmacología , Albuminuria/tratamiento farmacológico , Albuminuria/genética , Albuminuria/metabolismo , Albuminuria/patología , Animales , Modelos Animales de Enfermedad , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Galactosiltransferasas/genética , Humanos , Ratones , Ratones Transgénicos , Trihexosilceramidas/genética , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
12.
J Biol Chem ; 287(53): 44772-83, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23093409

RESUMEN

A novel lectin structure was found for a 17-kDa α-D-galactose-binding lectin (termed "MytiLec") isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45-52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1-4Galß1-4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3.


Asunto(s)
Linfoma de Burkitt/metabolismo , Lectinas/química , Lectinas/toxicidad , Mytilus/metabolismo , Polisacáridos/metabolismo , Trihexosilceramidas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/fisiopatología , Línea Celular Tumoral , Humanos , Células K562 , Lectinas/genética , Lectinas/metabolismo , Datos de Secuencia Molecular , Mytilus/química , Mapeo Peptídico , Alineación de Secuencia , Trihexosilceramidas/genética
13.
Optom Vis Sci ; 90(2): e63-78, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23334311

RESUMEN

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by accumulation of Gb-3 (globotriaosylceramide) in cellular lysosomes of tissues throughout the body. With advancing age, lysosomal Gb-3 accumulates in blood vessel walls, nerve cells, smooth muscle, and vital organs. Premature death commonly results from renal failure, heart attack, and stroke when the diagnosis is delayed or overlooked. One of the earliest and most distinctive physical features of FD is a whorl-like keratopathy. This finding is easily identifiable during a routine eye examination with a slit lamp, making eye care practitioners uniquely postured to identify patients and families with this incurable genetic disorder. Much of the pain, suffering, and adverse impact of FD can be avoided if an alert eye care expert sees the patient at an early age, identifies the condition, and makes the appropriate referral. The importance of obtaining a thorough medical history, ancestral health history, and review of systems to correlate ocular and systemic manifestations is emphasized. This report reviews the multisystem involvement of FD and describes the clinical characteristics and expected chronological appearance of ophthalmic and systemic manifestations. The discoveries of late-onset variants, increased prevalence, and modified inheritance pattern of FD are discussed. The profound therapeutic effects of recombinant enzyme replacement therapy (ERT) on multiple organ systems are detailed and demonstrated in a Fabry proband. Improved quality and quantity of life after initiation of ERT underscore the importance of early recognition and correlation of FD symptoms and clinical signs. Treatment strategies and the effectiveness of new adjunctive chaperone therapy are addressed.


Asunto(s)
ADN/genética , Oftalmopatías , Enfermedad de Fabry , Mutación , Trihexosilceramidas/genética , Oftalmopatías/complicaciones , Oftalmopatías/epidemiología , Oftalmopatías/genética , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/epidemiología , Enfermedad de Fabry/genética , Predisposición Genética a la Enfermedad , Salud Global , Humanos , Lisosomas/metabolismo , Prevalencia , Trihexosilceramidas/metabolismo
14.
Biol Chem ; 393(8): 785-99, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22944681

RESUMEN

Shiga toxins (Stxs) are composed of an enzymatically active A subunit (StxA) and a pentameric B subunit (StxB) that preferentially binds to the glycosphingolipid (GSL) globo\xadtriaosylceramide (Gb3Cer/CD77) and to a reduced extent to globotetraosylceramide (Gb4Cer). The identification of Gb3Cer as a tumor-associated GSL in human pancreatic cancer prompted us to investigate the expression of Gb3Cer and Gb4Cer in 15 human pancreatic ductal adenocarcinoma cell lines derived from primary tumors and liver, ascites, and lymph node metastases. Thin-layer chromatography overlay assays revealed the occurrence of Gb3Cer in all and of Gb4Cer in the majority of cell lines, which largely correlated with transcriptional expression analysis of Gb3Cer and Gb4Cer synthases. Prominent Gb3Cer and Gb4Cer lipoform heterogeneity was based on ceramides carrying predominantly C16:0 and C24:0/C24:1 fatty acids. Stx2-mediated cell injury ranged from extremely high sensitivity (CD(50) of 0.94 pg/ml) to high refractiveness (CD(50) of 5.8 µg/ml) and to virtual resistance portrayed by non-determinable CD(50) values even at the highest Stx2 concentration (10 µg/ml) applied. Importantly, Stx2-mediated cytotoxicity did not correlate with Gb3Cer expression (the preferential Stx receptor), suggesting that the GSL receptor content does not primarily determine cell sensitivity and that other, yet to be delineated, cellular factors might influence the responsiveness of cancer cells.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Supervivencia Celular/efectos de los fármacos , Globósidos/genética , Toxina Shiga II/farmacología , Trihexosilceramidas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/secundario , Ascitis/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Globósidos/análisis , Globósidos/metabolismo , Humanos , Neoplasias Hepáticas/patología , Ganglios Linfáticos/patología , Toxina Shiga II/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/química , Trihexosilceramidas/análisis , Trihexosilceramidas/metabolismo
15.
J Biomed Sci ; 17: 26, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20398385

RESUMEN

BACKGROUND: Enzyme replacement therapy (ERT) with alpha-galactosidase A (alpha-Gal A) is currently the most effective therapeutic strategy for patients with Fabry disease, a lysosomal storage disease. However, ERT has limitations of a short half-life, requirement for frequent administration, and limited efficacy for patients with renal failure. Therefore, we investigated the efficacy of recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for a Fabry disease mouse model and compared it with that of ERT. METHODS: A pseudotyped rAAV2/8 vector encoding alpha-Gal A cDNA (rAAV2/8-hAGA) was prepared and injected into 18-week-old male Fabry mice through the tail vein. The alpha-Gal A expression level and globotriaosylceramide (Gb3) levels in the Fabry mice were examined and compared with Fabry mice with ERT. Immunohistochemical and ultrastructural studies were conducted. RESULTS: Treatment of Fabry mice with rAAV2/8-hAGA resulted in the clearance of accumulated Gb3 in tissues such as liver, spleen, kidney, heart, and brain with concomitant elevation of alpha-Gal A enzyme activity. Enzyme activity was elevated for up to 60 weeks. In addition, expression of the alpha-Gal A protein was identified in the presence of rAAV2/8-hAGA at 6, 12, and 24 weeks after treatment. alpha-Gal A activity was significantly higher in the mice treated with rAAV2/8-hAGA than in Fabry mice that received ERT. Along with higher alpha-Gal A activity in the kidney of the Fabry mice treated with gene therapy, immunohistochemical studies showed more alpha-Gal A expression in the proximal tubules and glomerulus, and less Gb3 deposition in Fabry mice treated with this gene therapy than in mice given ERT. The alpha-gal A gene transfer significantly reduced the accumulation of Gb3 in the tubules and podocytes of the kidney. Electron microscopic analysis of the kidneys of Fabry mice also showed that gene therapy was more effective than ERT. CONCLUSIONS: The rAAV2/8-hAGA mediated alpha-Gal A gene therapy provided improved efficiency over ERT in the Fabry disease mouse model. Furthermore, rAAV2/8-hAGA-mediated expression showed a greater effect in the kidney than ERT.


Asunto(s)
Dependovirus/genética , Enfermedad de Fabry/terapia , Terapia Genética , Animales , Dependovirus/metabolismo , Terapia de Reemplazo Enzimático , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Ratones Transgénicos , Trihexosilceramidas/genética , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
16.
Virulence ; 11(1): 769-780, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32507026

RESUMEN

BACILLUS CEREUS: is an opportunistic pathogen that can cause emetic or diarrheal foodborne illness. Previous studies have identified multiple pathogenic B. cereus strains and characterized a variety of virulence factors. Here, we demonstrate that the virulence and lethality of B. cereus for mammalian cells and host animals involve the interaction of B. cereus flagellin proteins and the host-cell-surface-localized glycosphingolipid Gb3 (CD77, Galα1-4Galß1-4Glcß1-Cer). We initially found that B. cereus infection was less lethal for Gb3-deficiencient A4galt-/- mice than for wild-type mice. Subsequent experiments established that some factor other than secreted toxins must account of the observed differential lethality: Gb3-deficiencient A4galt-/- mice were equally susceptible to secreted-virulence-factor-mediated death as WT mice, and we observed no differences in the bacterial loads of spleens or livers of mice treated with B. cereus strain vs. mice infected with a mutant variant of incapable of producing many secreted toxins. A screen for host-interacting B. cereus cell wall components identified the well-known flagellin protein, and both flagellin knockout strain assays and Gb3 inhibitor studies confirmed that flagellin does interact with Gb3 in a manner that affects B. cereus infection of host cells. Finally, we show that treatment with polyclonal antibody against flagellin can protect mice against B. cereus infection. Thus, beyond demonstrating a previously unappreciated interaction between a bacterial motor protein and a mammalian cell wall glycosphingolipid, our study will provide useful information for the development of therapies to treat infection of B. cereus.


Asunto(s)
Bacillus cereus/metabolismo , Bacillus cereus/patogenicidad , Adhesión Bacteriana , Flagelina/metabolismo , Interacciones Huésped-Patógeno , Trihexosilceramidas/metabolismo , Animales , Carga Bacteriana , Línea Celular , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trihexosilceramidas/genética , Virulencia , Factores de Virulencia/metabolismo
17.
Exp Neurol ; 324: 113134, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31778662

RESUMEN

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disorder that leads to cellular globotriaosylceramide (Gb3) accumulation due to mutations in the gene encoding α-galactosidase A. Trigger-induced acral burning pain is an early FD symptom of unknown pathophysiology. We aimed at investigating the potential role of skin fibroblasts in nociceptor sensitization. PATIENTS AND METHODS: We enrolled 40 adult FD patients and ten healthy controls, who underwent a 6-mm skin punch biopsy at the lower leg. Dermal fibroblasts were cultivated and analyzed for Gb3 load. Fibroblast electrical activity was assessed using patch-clamp analysis at baseline and upon incubation with agalsidase-α for 24 h. We investigated gene expression of CC motif chemokine ligand 2 (CCL2), Ca2+activated K+-channel 1.1 (KCa1.1), interferone-γ (IFN-γ), transforming growth factor-ß1 (TGF-ß1), and transmembrane receptor notch homolog 1 (Notch1) using quantitative real-time-PCR, and protein levels of KCa1.1 by ELISA. Gene expression was determined at baseline and after fibroblast stimulation with tumor necrosis factor-α (TNF), modeling inflammation as a common pain trigger in FD. RESULTS: Total Gb3 load was higher in FD fibroblasts than in control fibroblasts (p < .01). Upon increase of intracellular Ca2+ concentrations, we detected differential electrical activity of KCa1.1 in fibroblasts obtained from patients with FD. Gene expression (p < .05) and protein levels of KCa1.1 (p < .05) were higher in fibroblasts from FD patients compared to control fibroblasts, whereas electric channel activity was lower in FD fibroblasts. After incubation with agalsidase-α, we observed an over-proportionate increase of KCa1.1 activity in FD fibroblasts reaching 7-fold the currents of control cells (p < .01). Gene expression studies revealed higher mRNA levels of CCL2, INF-γ, and Notch1 in FD fibroblasts compared to controls at baseline and after TNF incubation (p < .05 each), while TGF-ß1 was higher in FD fibroblasts only after incubation with TNF (p < .05). CONCLUSIONS: Gb3 deposition in skin fibroblasts may impair KCa1.1 activity and activate the Notch1 signaling pathway. The resulting increase in pro-inflammatory mediator expression may contribute to cutaneous nociceptor sensitization as a potential mechanism of FD-associated pain.


Asunto(s)
Enfermedad de Fabry/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Receptor Notch1/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trihexosilceramidas/metabolismo , Adolescente , Adulto , Anciano , Animales , Quimiocina CCL2/metabolismo , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Femenino , Fibroblastos/patología , Expresión Génica/efectos de los fármacos , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Ratones , Persona de Mediana Edad , Dolor , Cultivo Primario de Células , Piel/patología , Factor de Transcripción ReIA/metabolismo , Trihexosilceramidas/antagonistas & inhibidores , Trihexosilceramidas/genética , Adulto Joven
18.
BMC Cancer ; 9: 67, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19245689

RESUMEN

BACKGROUND: The prerequisite for the potential use of the bacterial toxin verotoxin-1 in the treatment of breast cancer was investigated by first determining the expression of its receptor Gb3 (CD77) in clinical breast cancer tissue specimens. We then examined the cytotoxicity and mechanism of apoptosis induction of Escherichia coli verotoxin-1 (VT-1) in two human breast cancer cell lines. METHODS: Immunohistochemistry for Gb3 expression was performed on cryostat section from 25 breast cancer specimens. The human breast cancer cell lines T47D and MCF-7 were screened for Gb3 expression by flow cytometry. Fluorescein diacetate and LDH release was used to determine cell viability after VT-1 exposure. Apoptosis was studied by measuring caspase activity and DNA-fragmentation. Signal transduction studies were performed on T47D cells with immunoblotting. RESULTS: Gb3 expression was detected in the vascular endothelial cells of all tumours specimens, and in tumour cells in 17 of the specimens. We found no associations between tumour cell Gb3-expression and age, tumour size, TNM-classification, histological type, hormone receptor expression, or survival time. T47D cells strongly expressed Gb3 and were sensitive to the cytotoxicity, caspase activation and DNA fragmentation by VT-1, whereas MCF-7 cells with faint Gb3-expression were insensitive to VT-1. VT-1 (0.01 - 5 microg/L) exposure for 72 h resulted in a small percentage of viable T47D cells whereas the cytotoxicity of cells pre-treated with 2 micromol/L D, L-treo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, an inhibitor of glucosylceramide synthesis) was eliminated (< or = 0.1 microg/L VT-1) or reduced (0.5 - 5 microg/L VT-1). VT-1 did not cause cellular LDH-release or cell cycle arrest. VT-1 induction of caspase-3 (0.1, 1, and 5 microg/L VT-1), -8, and -9 (1 and 5 microg/L VT-1) activity and DNA fragmentation of T47D cells was blocked by PPMP. Key components of MAP kinase signalling pathways that control mitochondrial function were investigated. VT-1 0.1 - 5 microg/L induced phosphorylation of JNK as well as MKK3/6 suggesting that survival signal pathways were overruled by VT-1-induced JNK activation leading to mitochondrial depolarization, caspase-9 activation and apoptosis. CONCLUSION: The high specificity and apoptosis-inducing properties of verotoxin-1 indicates that the toxin potentially may be used for treatment of Gb3-expressing breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Toxina Shiga I/farmacología , Transducción de Señal/efectos de los fármacos , Trihexosilceramidas/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Persona de Mediana Edad , Trihexosilceramidas/metabolismo
19.
Biol Cell ; 100(12): 717-25, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18564063

RESUMEN

BACKGROUND INFORMATION: Spherulites are multi-lamellar lipidic vesicles that can encapsulate biomolecules and may be used as carriers for drug delivery. STxB (Shiga toxin B-subunit) is known to bind the glycosphingolipid Gb3 (globotriaosyl ceramide), which is overexpressed by various human tumours. After Gb3 binding, the toxin enters the cytoplasm via the retrograde route, bypassing the degrading environment of the late endosomes/lysosomes. STxB is non-toxic and has been identified as a promising tool for drug delivery. So far, applications have relied on direct coupling with therapeutic agents. In the present study, we have investigated the functionalization of spherulites by STxB and the intracellular trafficking of these structures. RESULTS: We demonstrate that STxB-spherulites (ST x B-functionalized spherulites) are internalized into HeLa cells in a receptor-dependent manner. The intracellular distribution was studied by confocal microscopy for lipids, ligand and content. We observed an early separation between spherulites and STxB, leading to a late endosomal/lysosomal localization of lipids and content, whereas STxB remained partially at the plasma membrane. CONCLUSIONS: Although recognition of Gb3 is the cause of their specific adhesion to cell membranes, STxB-spherulites do not follow the retrograde transport route. Our results strongly suggest that STxB-spherulites are, at least in part, disrupted at the plasma membrane, leading to lipid and content targeting to the classical endocytic pathway. We discuss how these findings influence the development of innovative delivery strategies.


Asunto(s)
Toxina Shiga II/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Microscopía Confocal , Transporte de Proteínas , Toxina Shiga II/genética , Vesículas Transportadoras/genética , Trihexosilceramidas/genética , Trihexosilceramidas/metabolismo
20.
Neurogastroenterol Motil ; 31(3): e13529, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609268

RESUMEN

BACKGROUND: Fabry disease (FD) is a hereditary X-linked metabolic storage disorder characterized by deficient or absent lysosomal α-galactosidase A (α-Gal A) activity. This deficiency causes progressive accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in nearly all organ systems. Gastrointestinal (GI) symptoms can be very debilitating and are among the most frequent and earliest of the disease. As the pathophysiology of these symptoms is poorly understood, we carried out a morphological and molecular characterization of the GI tract in α-Gal A knockout mice colon in order to reveal the underlying mechanisms. METHODS: Here, we performed the first morphological and biomolecular characterization of the colon wall structure in the GI tract of the α-Gal A knock-out mouse (α-Gal A -/0), a murine model of FD. KEY RESULTS: Our data show a greater thickness of the gastrointestinal wall in α-Gal A (-/0) mice due to enlarged myenteric plexus' ganglia. This change is paralleled by a marked Gb3 accumulation in the gastrointestinal wall and a decreased and scattered pattern of mucosal nerve fibers. CONCLUSIONS AND INFERENCES: The observed alterations are likely to be a leading cause of gut motor dysfunctions experienced by FD patients and imply that the α-Gal A (-/0) male mouse represents a reliable model for translational studies on enteropathic pain and GI symptoms in FD.


Asunto(s)
Colon/metabolismo , Colon/patología , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Fibras Nerviosas/patología , Trihexosilceramidas/metabolismo , Animales , Citocinas/sangre , Femenino , Masculino , Ratones , Ratones Noqueados , Plexo Mientérico/metabolismo , Plexo Mientérico/patología , Trihexosilceramidas/genética , Ubiquitina Tiolesterasa/genética , alfa-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA