Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.034
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 125-144, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30485751

RESUMEN

Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.


Asunto(s)
Aterosclerosis/inmunología , Enfermedades Autoinmunes/inmunología , Plaquetas/inmunología , Inflamación , Infarto del Miocardio/inmunología , Trombosis/inmunología , Virosis/inmunología , Animales , Carcinogénesis/inmunología , Humanos , Inmunomodulación
2.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749423

RESUMEN

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Asunto(s)
Envejecimiento , Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Trombosis , Animales , Células Madre Hematopoyéticas/metabolismo , Plaquetas/metabolismo , Trombosis/patología , Trombosis/metabolismo , Ratones , Humanos , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Células Progenitoras de Megacariocitos/metabolismo , Masculino
3.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33065030

RESUMEN

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Asunto(s)
COVID-19/complicaciones , COVID-19/inmunología , SARS-CoV-2/genética , Trombosis/complicaciones , Enfermedades Vasculares/complicaciones , Anciano de 80 o más Años , Animales , Lavado Broncoalveolar , Proteína C-Reactiva/análisis , COVID-19/sangre , COVID-19/patología , Activación de Complemento , Citocinas/sangre , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Inflamación/virología , Pulmón/patología , Macaca mulatta , Macrófagos/inmunología , Masculino , Activación Plaquetaria , Trombosis/sangre , Trombosis/patología , Transcriptoma , Enfermedades Vasculares/sangre , Enfermedades Vasculares/patología
4.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142679

RESUMEN

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombosis/metabolismo , Animales , Arterias/lesiones , Arterias/metabolismo , Arterias/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/patología , Muerte Súbita Cardíaca/patología , Glutamina/sangre , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolómica/métodos , Ratones , Infarto del Miocardio/sangre , Infarto del Miocardio/microbiología , Activación Plaquetaria/genética , Receptores Adrenérgicos alfa/sangre , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangre , Receptores Adrenérgicos beta/genética , Factores de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/microbiología , Accidente Cerebrovascular/patología , Trombosis/genética , Trombosis/microbiología , Trombosis/patología
5.
Immunity ; 57(5): 957-972, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749398

RESUMEN

Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.


Asunto(s)
Plaquetas , Inmunidad Innata , Plaquetas/inmunología , Humanos , Animales , Inmunidad Innata/inmunología , Inflamación/inmunología , Inmunidad Adaptativa/inmunología , Trombosis/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología
6.
Immunity ; 57(9): 2140-2156.e10, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226900

RESUMEN

Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcµR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.


Asunto(s)
Plaquetas , COVID-19 , Activación de Complemento , Inmunoglobulina M , Trombosis , Humanos , Trombosis/inmunología , Animales , Inmunoglobulina M/inmunología , Activación de Complemento/inmunología , Ratones , Plaquetas/inmunología , Plaquetas/metabolismo , COVID-19/inmunología , COVID-19/complicaciones , SARS-CoV-2/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Activación Plaquetaria/inmunología , Inmunoglobulina G/inmunología , Masculino
7.
Cell ; 173(3): 581-594.e12, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656895

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Mutación , Metástasis de la Neoplasia , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Biopsia , Mapeo Cromosómico , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 9 , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Trombosis , Resultado del Tratamiento
8.
Immunity ; 56(5): 1013-1026.e6, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36944334

RESUMEN

Sepsis is a dysregulated inflammatory consequence of systemic infection. As a result, excessive platelet activation leads to thrombosis and coagulopathy, but we currently lack sufficient understanding of these processes. Here, using the cecal ligation and puncture (CLP) model of sepsis, we observed septic thrombosis and neutrophil extracellular trap formation (NETosis) within the mouse vasculature by intravital microscopy. STING activation in platelets was a critical driver of sepsis-induced pathology. Platelet-specific STING deficiency suppressed platelet activation and granule secretion, which alleviated sepsis-induced intravascular thrombosis and NETosis in mice. Mechanistically, sepsis-derived cGAMP promoted the binding of STING to STXBP2, the assembly of SNARE complex, granule secretion, and subsequent septic thrombosis, which probably depended on the palmitoylation of STING. We generated a peptide, C-ST5, to block STING binding to STXBP2. Septic mice treated with C-ST5 showed reduced thrombosis. Overall, platelet activation via STING reveals a potential strategy for limiting life-threatening sepsis-mediated coagulopathy.


Asunto(s)
Trampas Extracelulares , Sepsis , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Trampas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Proteínas Munc18/metabolismo , Activación Plaquetaria , Sepsis/metabolismo , Trombosis/metabolismo
9.
Cell ; 171(6): 1256-1258, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195072

RESUMEN

The idea that anucleate platelets display autonomous migration has long been viewed with skepticism. Gaertner et al. provide in vivo evidence that platelets undergo active migration at sites of thrombus formation and in inflamed liver sinusoids. Integrin-dependent migration allows platelets to scavenge and bundle fibrin-bound material, including intravascular bacteria.


Asunto(s)
Plaquetas , Trombosis , Bacterias , Fibrina , Humanos , Integrinas
11.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36272416

RESUMEN

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Asunto(s)
Enfermedades Cardiovasculares , Infarto del Miocardio , Trombosis , Humanos , Megacariocitos , Trombopoyesis , Neutrófilos , Plaquetas/fisiología
12.
Cell ; 165(1): 111-124, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26972052

RESUMEN

Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.


Asunto(s)
Plaquetas/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Trombosis/metabolismo , Animales , Calcio/metabolismo , Traumatismos de las Arterias Carótidas/patología , Ciego/microbiología , Cloruros , Colina/metabolismo , Dieta , Femenino , Compuestos Férricos , Vida Libre de Gérmenes , Humanos , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Trombosis/patología
13.
Physiol Rev ; 103(1): 277-312, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951483

RESUMEN

Neutrophil extracellular trap (NET) formation, first described in 2004 as a previously unknown strategy of neutrophils to fight microbes, has attracted an increasing interest in the research community. NETs are formed when neutrophils externalize their decondensed chromatin together with content from their azurophilic granules. In addition to their role in defense against microbes, NETs have been implicated as mediators of pathology in sterile inflammation, such as cancer and autoimmunity, and their potential as therapeutic targets is actively explored. However, targeting of NETs is challenging since the beneficial effects of their removal need to be balanced against the potential harmful loss of their function in microbial defense. Moreover, depending on the stimuli or species, NETs can be formed via distinct mechanisms and are not always made up of the same components, making direct comparisons between various studies challenging. This review focuses on the role of NETs in cancer-associated pathology, such as thrombosis, organ dysfunction, and metastasis. Different strategies to target NETs, by either preventing their formation or degrading existing ones, are also discussed.


Asunto(s)
Trampas Extracelulares , Neoplasias , Trombosis , Cromatina , Humanos , Neoplasias/patología , Neutrófilos
14.
Nature ; 633(8031): 905-913, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198643

RESUMEN

Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.


Asunto(s)
Encéfalo , COVID-19 , Fibrina , Inflamación , Trombosis , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , COVID-19/complicaciones , Fibrina/antagonistas & inhibidores , Fibrina/metabolismo , Fibrinógeno/metabolismo , Inmunidad Innata , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Células Asesinas Naturales/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Activación de Macrófagos/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Enfermedades Neuroinflamatorias/complicaciones , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , Neuronas/patología , Neuronas/virología , Estrés Oxidativo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/complicaciones , Trombosis/inmunología , Trombosis/patología , Trombosis/virología , Síndrome Post Agudo de COVID-19/inmunología , Síndrome Post Agudo de COVID-19/virología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología
15.
Physiol Rev ; 101(2): 545-567, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124941

RESUMEN

Evolving information has identified disease mechanisms and dysregulation of host biology that might be targeted therapeutically in coronavirus disease 2019 (COVID-19). Thrombosis and coagulopathy, associated with pulmonary injury and inflammation, are emerging clinical features of COVID-19. We present a framework for mechanisms of thrombosis in COVID-19 that initially derive from interaction of SARS-CoV-2 with ACE2, resulting in dysregulation of angiotensin signaling and subsequent inflammation and tissue injury. These responses result in increased signaling by thrombin (proteinase-activated) and purinergic receptors, which promote platelet activation and exert pathological effects on other cell types (e.g., endothelial cells, epithelial cells, and fibroblasts), further enhancing inflammation and injury. Inhibitors of thrombin and purinergic receptors may, thus, have therapeutic effects by blunting platelet-mediated thromboinflammation and dysfunction in other cell types. Such inhibitors include agents (e.g., anti-platelet drugs) approved for other indications, and that could be repurposed to treat, and potentially improve the outcome of, COVID-19 patients. COVID-19, caused by the SARS-CoV-2 virus, drives dysregulation of angiotensin signaling, which, in turn, increases thrombin-mediated and purinergic-mediated activation of platelets and increase in inflammation. This thromboinflammation impacts the lungs and can also have systemic effects. Inhibitors of receptors that drive platelet activation or inhibitors of the coagulation cascade provide opportunities to treat COVID-19 thromboinflammation.


Asunto(s)
COVID-19/complicaciones , Inflamación/etiología , Receptores Proteinasa-Activados/metabolismo , Receptores Purinérgicos/metabolismo , SARS-CoV-2 , Trombosis/etiología , Humanos , Inflamación/tratamiento farmacológico , Antagonistas Purinérgicos/farmacología , Receptores Proteinasa-Activados/antagonistas & inhibidores , Receptores Proteinasa-Activados/genética , Receptores Purinérgicos/genética , Trombosis/prevención & control
16.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31076358

RESUMEN

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Asunto(s)
Coagulación Sanguínea , Inflamasomas/metabolismo , Piroptosis , Trombosis/etiología , Trombosis/metabolismo , Animales , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/microbiología , Biomarcadores , Caspasas/metabolismo , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/mortalidad
17.
Nature ; 596(7873): 565-569, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34233346

RESUMEN

Vaccine-induced immune thrombotic thrombocytopaenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1-3. VITT resembles heparin-induced thrombocytopaenia (HIT) in that it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopaenia and thrombosis without exposure to heparin. Here we sought to determine the binding site on PF4 of antibodies from patients with VITT. Using alanine-scanning mutagenesis5, we found that the binding of anti-PF4 antibodies from patients with VITT (n = 5) was restricted to eight surface amino acids on PF4, all of which were located within the heparin-binding site, and that the binding was inhibited by heparin. By contrast, antibodies from patients with HIT (n = 10) bound to amino acids that corresponded to two different sites on PF4. Biolayer interferometry experiments also revealed that VITT anti-PF4 antibodies had a stronger binding response to PF4 and PF4-heparin complexes than did HIT anti-PF4 antibodies, albeit with similar dissociation rates. Our data indicate that VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4; this allows PF4 tetramers to cluster and form immune complexes, which in turn causes Fcγ receptor IIa (FcγRIIa; also known as CD32a)-dependent platelet activation. These results provide an explanation for VITT-antibody-induced platelet activation that could contribute to thrombosis.


Asunto(s)
Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Trombocitopenia/inducido químicamente , Trombocitopenia/inmunología , Trombosis/inducido químicamente , Trombosis/inmunología , Adulto , Anciano , Secuencia de Aminoácidos , Anticuerpos/inmunología , Sitios de Unión de Anticuerpos , Femenino , Heparina/química , Heparina/inmunología , Heparina/metabolismo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Activación Plaquetaria , Factor Plaquetario 4/inmunología , Receptores de IgG/inmunología
18.
Nature ; 599(7884): 283-289, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517409

RESUMEN

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/patología , COVID-19/virología , Senescencia Celular/efectos de los fármacos , Terapia Molecular Dirigida , SARS-CoV-2/patogenicidad , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , COVID-19/complicaciones , Línea Celular , Cricetinae , Dasatinib/farmacología , Dasatinib/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Quercetina/farmacología , Quercetina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Trombosis/complicaciones , Trombosis/inmunología , Trombosis/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(11): e2314349121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442174

RESUMEN

Thrombosis, induced by abnormal coagulation or fibrinolytic systems, is the most common pathology associated with many life-threatening cardio-cerebrovascular diseases. However, first-line anticoagulant drugs suffer from rapid drug elimination and risk of hemorrhagic complications. Here, we developed an in situ formed depot of elastin-like polypeptide (ELP)-hirudin fusion protein with a prodrug-like feature for long-term antithrombotic therapy. Highly secretory expression of the fusion protein was achieved with the assistance of the Ffu312 tag. Integration of hirudin, ELP, and responsive moiety can customize fusion proteins with properties of adjustable in vivo retention and controllable recovery of drug bioactivity. After subcutaneous injection, the fusion protein can form a reservoir through temperature-induced coacervation of ELP and slowly diffuse into the blood circulation. The biological activity of hirudin is shielded due to the N-terminal modification, while the activated key proteases upon thrombus occurrence trigger the cleavage of fusion protein together with the release of hirudin, which has antithrombotic activity to counteract thrombosis. We substantiated that the optimized fusion protein produced long-term antithrombotic effects without the risk of bleeding in multiple animal thrombosis models.


Asunto(s)
Polipéptidos Similares a Elastina , Trombosis , Animales , Fibrinolíticos/farmacología , Hirudinas/genética , Hirudinas/farmacología , Anticoagulantes , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
20.
Proc Natl Acad Sci U S A ; 121(10): e2315083121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408253

RESUMEN

Tissue plasminogen activator (tPA) is the only FDA-approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis. Transparent zebrafish larvae have a highly conserved coagulation cascade that enables studies of hemostasis and thrombosis in the context of intact vasculature, clotting factors, and blood cells. Here, we show that tPA-functionalized µwheels can perform rapid and targeted recanalization in vivo. This effect requires both tPA and µwheels, as minimal to no recanalization is achieved with tPA alone, µwheels alone, or tPA-functionalized microparticles in the absence of a magnetic field. We evaluated tPA-functionalized µwheels in CRISPR-generated plasminogen (plg) heterozygous and homozygous mutants and confirmed that tPA-functionalized µwheels are dose-dependent on plasminogen for lysis. We have found that magnetically powered µwheels as a targeted tPA delivery system are dramatically more efficient at plasmin-mediated thrombolysis than systemic delivery in vivo. Further development of this system in fish and mammalian models could enable a less invasive strategy for alleviating ischemia that is safer than directed thrombectomy or systemic infusion of tPA.


Asunto(s)
Accidente Cerebrovascular , Trombosis , Animales , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Pez Cebra , Plasminógeno , Trombosis/terapia , Terapia Trombolítica , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA