Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.523
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Nat Immunol ; 20(10): 1269-1278, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31534240

RESUMEN

The immune response is orchestrated by a variety of immune cells. The function of each cell is determined by the collective signals from various immunoreceptors, whose expression and activity depend on the developmental stages of the cell and its environmental context. Recent studies have highlighted the presence of mechanical force on several immunoreceptor-ligand pairs and the important role of force in regulating their interaction and function. In this Perspective, we use the T cell antigen receptor as an example with which to review the current understanding of the mechanosensing properties of immunoreceptors. We discuss the types of forces that immunoreceptors may encounter and the effects of force on ligand bonding, conformational change and the triggering of immunoreceptors, as well as the effects of force on the downstream signal transduction, cell-fate decisions and effector function of immune cells.


Asunto(s)
Regulación Alostérica/inmunología , Sinapsis Inmunológicas/metabolismo , Mecanotransducción Celular/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Adhesión Celular , Movimiento Celular , Microambiente Celular , Humanos , Inmunidad , Rodamiento de Leucocito , Receptor Cross-Talk , Transducción de Señal
2.
Nature ; 629(8013): 810-818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778234

RESUMEN

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Asunto(s)
Velocidad del Flujo Sanguíneo , Encéfalo , Circulación Cerebrovascular , Ultrasonografía , Humanos , Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Errores Médicos , Relación Señal-Ruido , Piel , Cráneo , Somnolencia/fisiología , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Adulto
3.
Proc Natl Acad Sci U S A ; 120(14): e2217744120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989300

RESUMEN

Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Animales , Ratones , Reología/métodos , Encéfalo , Física , Velocidad del Flujo Sanguíneo
4.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37968115

RESUMEN

Quantifying the effects of free breathing on cerebral venous flow is crucial for understanding cerebral circulation mechanisms and clinical applications. Unlike conventional cine phase-contrast MRI sequences (CINE-PC), real-time phase-contrast MRI sequences (RT-PC) can provide a continuous beat-to-beat flow signal that makes it possible to quantify the effect of breathing on cerebral venous flow. In this study, we examined 28 healthy human participants, comprising of 14 males and 14 females. Blood flows in the right/left internal jugular veins in the extracranial plane and the superior sagittal sinus (SSS) and straight sinus in the intercranial plane were quantified using CINE-PC and RT-PC. The first objective of this study was to determine the accuracy of RT-PC in quantifying cerebral venous flow, relative to CINE-PC. The second, and main objective, was to quantify the effect of free breathing on cerebral venous flow, using a time-domain multiparameter analysis method. Our results showed that RT-PC can accurately quantify cerebral venous flow with a 2 × 2 mm2 spatial resolution and 75 ms/image time resolution. The mean flow rate, amplitude, stroke volume, and cardiac period of cerebral veins were significantly higher from the mid-end phase of expiration to the mid-end phase of inspiration. Breathing affected the mean flow rates in the jugular veins more than those in the SSS and straight sinus. Furthermore, the effects of free breathing on the flow rate of the left and right jugular veins were not synchronous. These new findings provide a useful reference for better understanding the mechanisms of cerebral circulation.


Asunto(s)
Venas Cerebrales , Masculino , Adulto , Femenino , Humanos , Venas Cerebrales/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular , Venas Yugulares/diagnóstico por imagen
5.
PLoS Comput Biol ; 20(6): e1012231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900817

RESUMEN

Computational fluid dynamics (CFD) can be used for non-invasive evaluation of hemodynamics. However, its routine use is limited by labor-intensive manual segmentation, CFD mesh creation, and time-consuming simulation. This study aims to train a deep learning model to both generate patient-specific volume-meshes of the pulmonary artery from 3D cardiac MRI data and directly estimate CFD flow fields. This proof-of-concept study used 135 3D cardiac MRIs from both a public and private dataset. The pulmonary arteries in the MRIs were manually segmented and converted into volume-meshes. CFD simulations were performed on ground truth meshes and interpolated onto point-point correspondent meshes to create the ground truth dataset. The dataset was split 110/10/15 for training, validation, and testing. Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values, taking a specific inlet velocity as an additional input. Image2Flow was evaluated in terms of segmentation, and the accuracy of predicted CFD was assessed using node-wise comparisons. In addition, the ability of Image2Flow to respond to increasing inlet velocities was also evaluated. Image2Flow achieved excellent segmentation accuracy with a median Dice score of 0.91 (IQR: 0.86-0.92). The median node-wise normalized absolute error for pressure and velocity magnitude was 11.75% (IQR: 9.60-15.30%) and 9.90% (IQR: 8.47-11.90), respectively. Image2Flow also showed an expected response to increased inlet velocities with increasing pressure and velocity values. This proof-of-concept study has shown that it is possible to simultaneously perform patient-specific volume-mesh based segmentation and pressure and flow field estimation using Image2Flow. Image2Flow completes segmentation and CFD in ~330ms, which is ~5000 times faster than manual methods, making it more feasible in a clinical environment.


Asunto(s)
Hemodinámica , Imagenología Tridimensional , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Arteria Pulmonar , Humanos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Hemodinámica/fisiología , Modelos Cardiovasculares , Hidrodinámica , Prueba de Estudio Conceptual , Aprendizaje Profundo , Velocidad del Flujo Sanguíneo/fisiología , Biología Computacional/métodos
6.
Genes Dev ; 31(13): 1308-1324, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28779009

RESUMEN

Sufficient blood flow to tissues relies on arterial blood vessels, but the mechanisms regulating their development are poorly understood. Many arteries, including coronary arteries of the heart, form through remodeling of an immature vascular plexus in a process triggered and shaped by blood flow. However, little is known about how cues from fluid shear stress are translated into responses that pattern artery development. Here, we show that mice lacking endothelial Dach1 had small coronary arteries, decreased endothelial cell polarization, and reduced expression of the chemokine Cxcl12 Under shear stress in culture, Dach1 overexpression stimulated endothelial cell polarization and migration against flow, which was reversed upon CXCL12/CXCR4 inhibition. In vivo, DACH1 was expressed during early arteriogenesis but was down in mature arteries. Mature artery-type shear stress (high, uniform laminar) specifically down-regulated DACH1, while the remodeling artery-type flow (low, variable) maintained DACH1 expression. Together, our data support a model in which DACH1 stimulates coronary artery growth by activating Cxcl12 expression and endothelial cell migration against blood flow into developing arteries. This activity is suppressed once arteries reach a mature morphology and acquire high, laminar flow that down-regulates DACH1. Thus, we identified a mechanism by which blood flow quality balances artery growth and maturation.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Neovascularización Fisiológica/genética , Transducción de Señal/genética , Animales , Velocidad del Flujo Sanguíneo/fisiología , Movimiento Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Vasos Coronarios/fisiopatología , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Técnicas de Cultivo de Órganos , Receptores CXCR4/genética , Estrés Mecánico
7.
J Physiol ; 602(10): 2227-2251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690610

RESUMEN

Passive whole-body hyperthermia increases limb blood flow and cardiac output ( Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart and Q ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions, Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart and Q ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output: Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow and Q ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmented Q ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.


Asunto(s)
Gasto Cardíaco , Hipertermia , Humanos , Masculino , Adulto , Hipertermia/fisiopatología , Gasto Cardíaco/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Flujo Sanguíneo Regional/fisiología , Fiebre/fisiopatología , Adulto Joven , Calor , Hemodinámica
8.
Am J Physiol Heart Circ Physiol ; 326(3): H538-H547, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133616

RESUMEN

With the growing popularity of video gaming, deep vein thromboses are increasingly being reported in gamers. This study aimed to compare the effects of lower leg graduated compression sleeves and a 6-min walking break during prolonged gaming on blood flow and hemodynamics in competitive sport players to help mitigate this risk. Ten healthy gamers (19.6 ± 1.2 yr old; 9 men) consented to participate in this mixed-model crossover design study that consisted of three visits. In visit 1, participants engaged in continuous 2-h video game play wearing no compression (continuous). Visits 2 and 3 involved 2-h play wearing compression sleeves (compression) and 2-h game play interrupted at 1 h by a 6-min walk (walk). Doppler ultrasound measurements of the left popliteal artery were taken at 30, 60, 90, and 120 min, to record vessel diameter, blood flow velocity, and blood flow volume. Participants completed a survey to assess their perception of each approach. There was a significant interaction between conditions for blood flow and blood velocity (P = 0.01, P < 0.001). Post hoc analysis demonstrated a greater decrease in blood flow and blood velocity in the continuous group compared with the walk group at the 90-min mark (P = 0.04, P = 0.01). No differences were found between the compression and walk groups or between the continuous and compression groups (P = 0.42, P = 0.69). No interactions were observed in diameter, mean arterial pressure, or heart rate. This study suggests that incorporating a 6-min walk every 60 min during prolonged gaming is advisable to counteract the negative effects on blood flow hemodynamics.NEW & NOTEWORTHY A 6-min light-intensity walking break during gaming can effectively combat the adverse effects of prolonged sitting, surpassing compression garments. Prolonged sitting reduces blood flow velocity, potentially leading to deep vein thrombosis (DVT). Compression sleeves help, with superior results after a 6-min walk at 60 min. Although compression stockings offer moderate improvements, a 6-min active break proves more effective. These findings offer promising interventions for gamers' health, initiating guidelines to mitigate DVT risk during gaming.


Asunto(s)
Hemodinámica , Trombosis , Humanos , Masculino , Velocidad del Flujo Sanguíneo , Pierna/irrigación sanguínea , Extremidad Inferior , Trombosis/etiología , Trombosis/prevención & control , Caminata , Femenino , Adulto Joven
9.
Am J Physiol Heart Circ Physiol ; 326(4): H1037-H1044, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391315

RESUMEN

Recently, a novel method to estimate wedge pressure (Pw)-corrected minimal microvascular resistance (MR) was introduced. However, this method has not been validated since, and there are some theoretical concerns regarding the impact of different physiological conditions on the derivation of Pw measurements. This study sought to validate the recently introduced method to estimate Pw-corrected MR in a Doppler-derived study population and to evaluate the impact of different physiological conditions on the Pw measurements and the derivation of Pw-corrected MR. The method to derive "estimated" hyperemic microvascular resistance (HMR) without the need for Pw measurements was validated by estimating the coronary fractional flow reserve (FFRcor) from myocardial fractional flow reserve (FFRmyo) in a Doppler-derived study population (N = 53). From these patients, 24 had hyperemic Pw measurements available for the evaluation of hyperemic conditions on the derivation of Pw and its effect on the derivation of both "true" (with measured Pw) and "estimated" Pw-corrected HMR. Nonhyperemic Pw differed significantly from Pw measured in hyperemic conditions (26 ± 14 vs. 35 ± 14 mmHg, respectively, P < 0.005). Nevertheless, there was a strong linear relationship between FFRcor and FFRmyo in nonhyperemic conditions (R2 = 0.91, P < 0.005), as well as in hyperemic conditions (R2 = 0.87, P < 0.005). There was a strong linear relationship between "true" HMR and "estimated" HMR using either nonhyperemic (R2 = 0.86, P < 0.005) or hyperemic conditions (R2 = 0.85, P < 0.005) for correction. In contrast to a modest agreement between nonhyperemic Pw-corrected HMR and apparent HMR (R2 = 0.67, P < 0.005), hyperemic Pw-corrected HMR showed a strong agreement with apparent HMR (R2 = 0.88, P < 0.005). We validated the calculation method for Pw-corrected MR in a Doppler velocity-derived population. In addition, we found a significant impact of hyperemic conditions on the measurement of Pw and the derivation of Pw-corrected HMR.NEW & NOTEWORTHY The following are what is known: 1) wedge-pressure correction is often considered for the derivation of indices of minimal microvascular resistance, and 2) the Yong method for calculating wedge pressure-corrected index of microvascular resistance (IMR) without balloon inflation has never been validated in a Doppler-derived population and has not been tested under different physiological conditions. This study 1) adds validation for the Yong method for calculated wedge-pressure correction in a Doppler-derived study population and 2) shows significant influence of the physiological conditions on the derivation of coronary wedge pressure.


Asunto(s)
Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Hiperemia , Humanos , Vasos Coronarios/diagnóstico por imagen , Corazón , Velocidad del Flujo Sanguíneo , Circulación Coronaria/fisiología , Angiografía Coronaria
10.
Am J Physiol Heart Circ Physiol ; 326(5): H1105-H1116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391313

RESUMEN

Whether cerebral sympathetic-mediated vasomotor control can be modulated by local brain activity remains unknown. This study tested the hypothesis that the application or removal of a cognitive task during a cold pressor test (CPT) would attenuate and restore decreases in cerebrovascular conductance (CVC), respectively. Middle cerebral artery blood velocity (transcranial Doppler) and mean arterial pressure (finger photoplethysmography) were examined in healthy adults (n = 16; 8 females and 8 males) who completed a control CPT, followed by a CPT coupled with a cognitive task administered either 1) 30 s after the onset of the CPT and for the duration of the CPT or 2) at the onset of the CPT and terminated 30 s before the end of the CPT (condition order was counterbalanced). The major finding was that the CPT decreased the index of CVC, and such decreases were abolished when a cognitive task was completed concurrently and restored when the cognitive task was removed. As a secondary experiment, vasomotor interactions between sympathetic transduction pathways (α1-adrenergic and Y1-peptidergic) and compounds implicated in cerebral blood flow control [adenosine, and adenosine triphosphate (ATP)] were explored in isolated porcine cerebral arteries (wire myography). The data reveal α1-receptor agonism potentiated vasorelaxation modestly in response to adenosine, and preexposure to ATP attenuated contractile responses to α1-agonism. Overall, the data suggest a cognitive task attenuates decreases in CVC during sympathoexcitation, possibly related to an interaction between purinergic and α1-adrenergic signaling pathways.NEW & NOTEWORTHY The present study demonstrates that the cerebrovascular conductance index decreases during sympathoexcitation and this response can be positively and negatively modulated by the application or withdrawal of a nonexercise cognitive task. Furthermore, isolated vessel experiments reveal that cerebral α1-adrenergic agonism potentiates adenosine-mediated vasorelaxation and ATP attenuates α1-adrenergic-mediated vasocontraction.


Asunto(s)
Adenosina Trifosfato , Simpaticolíticos , Adulto , Masculino , Femenino , Humanos , Animales , Porcinos , Velocidad del Flujo Sanguíneo/fisiología , Adrenérgicos , Adenosina/farmacología , Circulación Cerebrovascular/fisiología , Presión Sanguínea/fisiología , Frío
11.
Am J Physiol Heart Circ Physiol ; 327(1): H268-H274, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787380

RESUMEN

Brachial artery flow-mediated dilation (BAFMD) is induced by hyperemic wall shear rate (WSR) following forearm ischemia. In older adults, there appears to be a reduced brachial hyperemic WSR and altered stimulus-response relationship compared with young adults. However, it is unclear if an altered forearm microvascular response to ischemia influences brachial hyperemic WSR in older adults. We determined associations between brachial hyperemic WSR and forearm skeletal muscle oxygen saturation in young and older adults. Healthy young (n = 17, 29 ± 7 yr) and older (n = 32, 65 ± 4 yr) adults participated in the study. BAFMD by a multigate spectral Doppler system and forearm skeletal muscle oxygen saturation by near-infrared spectroscopy were concurrently measured. When compared with the young, older adults showed reduced oxygen extraction kinetics (OE, 0.15 [0.12-0.17] vs. 0.09 [0.05-0.12]%s-1) and magnitude (So2deficit, 3,810 ± 1,420 vs. 2,723 ± 1,240%s) during ischemia, as well as oxygen resaturation kinetics (So2slope, 2.5 ± 0.7 vs. 1.7 ± 0.7%s-1) upon reperfusion (all P < 0.05). When OE in the young and So2slope in older adults were stratified by their median values, young adults with OE above the median had greater hyperemic WSR parameters compared with those below the median (P < 0.05), but So2slope in older adults did not show clear differences in hyperemic WSR parameters between those above/below the median. This study demonstrates that, in addition to a reduced microvascular response to ischemia, there may be a dissociation between microvascular response to ischemia and brachial hyperemic WSR in older adults, which may result in a further impairment of BAFMD in this cohort.NEW & NOTEWORTHY Microvascular response to ischemia and subsequent reperfusion is diminished in older adults compared with the young. Furthermore, there appears to be a dissociation between the microvascular response to ischemia and brachial hyperemic WSR in older adults, which may further disturb the BAFMD process in this cohort. A reduced BAFMD in older adults may be a result of multiple alterations occurring both at macro- and microcirculation.


Asunto(s)
Arteria Braquial , Antebrazo , Hiperemia , Microcirculación , Músculo Esquelético , Flujo Sanguíneo Regional , Vasodilatación , Humanos , Arteria Braquial/fisiopatología , Arteria Braquial/diagnóstico por imagen , Masculino , Femenino , Adulto , Anciano , Hiperemia/fisiopatología , Hiperemia/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Persona de Mediana Edad , Antebrazo/irrigación sanguínea , Adulto Joven , Isquemia/fisiopatología , Isquemia/metabolismo , Factores de Edad , Velocidad del Flujo Sanguíneo , Espectroscopía Infrarroja Corta , Envejecimiento/metabolismo , Envejecimiento/fisiología , Consumo de Oxígeno , Saturación de Oxígeno , Microvasos/fisiopatología , Microvasos/metabolismo , Microvasos/diagnóstico por imagen
12.
Magn Reson Med ; 91(4): 1384-1403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181170

RESUMEN

PURPOSE: To present a theoretical framework that rigorously defines and analyzes key concepts and quantities for velocity selective arterial spin labeling (VSASL). THEORY AND METHODS: An expression for the VSASL arterial delivery function is derived based on (1) labeling and saturation profiles as a function of velocity and (2) physiologically plausible approximations of changes in acceleration and velocity across the vascular system. The dependence of labeling efficiency on the amplitude and effective bolus width of the arterial delivery function is defined. Factors that affect the effective bolus width are examined, and timing requirements to minimize quantitation errors are derived. RESULTS: The model predicts that a flow-dependent negative bias in the effective bolus width can occur when velocity selective inversion (VSI) is used for the labeling module and velocity selective saturation (VSS) is used for the vascular crushing module. The bias can be minimized by choosing a nominal labeling cutoff velocity that is lower than the nominal cutoff velocity of the vascular crushing module. CONCLUSION: The elements of the model are specified in a general fashion such that future advances can be readily integrated. The model can facilitate further efforts to understand and characterize the performance of VSASL and provide critical theoretical insights that can be used to design future experiments and develop novel VSASL approaches.


Asunto(s)
Arterias , Angiografía por Resonancia Magnética , Marcadores de Spin , Arterias/diagnóstico por imagen , Modelos Teóricos , Aceleración , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología
13.
Magn Reson Med ; 91(5): 1994-2009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174601

RESUMEN

PURPOSE: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times. METHODS: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments. RESULTS: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution. CONCLUSION: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.


Asunto(s)
Estenosis de la Válvula Aórtica , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Hemodinámica , Fantasmas de Imagen , Artefactos , Velocidad del Flujo Sanguíneo , Imagenología Tridimensional/métodos
14.
Magn Reson Med ; 92(2): 761-771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523590

RESUMEN

PURPOSE: This study evaluated the velocity-selective (VS) MRA with different VS labeling modules, including double refocused hyperbolic tangent, eight-segment B1-insensitive rotation, delay alternating with nutation for tailored excitation, Fourier transform-based VS saturation, and Fourier transform-based inversion. METHODS: These five VS labeling modules were evaluated first through Bloch simulations, and then using VSMRA directly on various cerebral arteries of healthy subjects. The relative signal ratios from arterial ROIs and surrounding tissues as well as relative arteria-tissue contrast ratios of different methods were compared. RESULTS: Double refocused hyperbolic tangent and eight-segment B1-insensitive rotation showed very similar labeling effects. Delay alternating with nutation for tailored excitation yielded high arterial signal but with residual tissue signal due to the spatial banding effect. Fourier transform-based VS saturation with half the time of other techniques serves as an efficient nonsubtractive VSMRA method, but the remaining tissue signal still obscured some small distal arteries that were delineated by other subtraction-based VSMRA, allowing more complete cancelation of static tissue. Fourier transform-based inversion produced the highest arterial signal in VSMRA with minimal tissue background. CONCLUSION: This is the first study that angiographically compared five different VS labeling modules. Their labeling characteristics on arteries and tissue and implications for VSMRA and VS arterial spin labeling are discussed.


Asunto(s)
Arterias Cerebrales , Análisis de Fourier , Angiografía por Resonancia Magnética , Humanos , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiología , Angiografía por Resonancia Magnética/métodos , Adulto , Masculino , Femenino , Algoritmos , Velocidad del Flujo Sanguíneo/fisiología , Marcadores de Spin , Angiografía Cerebral/métodos , Circulación Cerebrovascular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
15.
Magn Reson Med ; 92(1): 158-172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411277

RESUMEN

PURPOSE: Abnormalities in cerebral veins are a common finding in many neurological diseases, yet there is a scarcity of MRI techniques to assess venous hemodynamic function. The present study aims to develop a noncontrast technique to measure a novel blood flow circulatory measure, venous transit time (VTT), which denotes the time it takes for water to travel from capillary to major veins. METHODS: The proposed sequence, venous transit time imaging by changes in T1 relaxation (VICTR), is based on the notion that as water molecules transition from the tissue into the veins, they undergo a change in T1 relaxation time. The validity of the measured VTT was tested by studying the VTT along the anatomically known flow trajectory of venous vessels as well as using a physiological vasoconstrictive challenge of caffeine ingestion. Finally, we compared the VTT measured with VICTR MRI to a bolus-tracking method using gadolinium-based contrast agent. RESULTS: VTT was measured to be 3116.3 ± 326.0 ms in the posterior superior sagittal sinus (SSS), which was significantly longer than 2865.0 ± 390.8 ms at the anterior superior sagittal sinus (p = 0.004). The test-retest assessment showed an interclass correlation coefficient of 0.964. VTT was significantly increased by 513.8 ± 239.3 ms after caffeine ingestion (p < 0.001). VTT measured with VICTR MRI revealed a strong correlation (R = 0.84, p = 0.002) with that measured with the contrast-based approach. VTT was found inversely correlated to cerebral blood flow and venous oxygenation across individuals. CONCLUSION: A noncontrast MRI technique, VICTR MRI, was developed to measure the VTT of the brain.


Asunto(s)
Venas Cerebrales , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Velocidad del Flujo Sanguíneo/fisiología , Venas Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología , Reproducibilidad de los Resultados , Cafeína/farmacología , Medios de Contraste , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos , Hemodinámica , Angiografía por Resonancia Magnética/métodos
16.
Magn Reson Med ; 92(1): 332-345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38469983

RESUMEN

PURPOSE: The delay alternating with nutation for tailored excitation (DANTE)-sampling perfection with application-optimized contrasts (SPACE) sequence facilitates 3D intracranial vessel wall imaging with simultaneous suppression of blood and CSF. However, the achieved image contrast depends closely on the selected sequence parameters, and the clinical use of the sequence is limited in vivo by observed signal variations in the vessel wall, CSF, and blood. This paper introduces a comprehensive DANTE-SPACE simulation framework, with the aim of providing a better understanding of the underlying contrast mechanisms and facilitating improved parameter selection and contrast optimization. METHODS: An extended phase graph formalism was developed for efficient spin ensemble simulation of the DANTE-SPACE sequence. Physiological processes such as pulsatile flow velocity variation, varying flow directions, intravoxel velocity variation, diffusion, and B 1 + $$ {\mathrm{B}}_1^{+} $$ effects were included in the framework to represent the mechanisms behind the achieved signal levels accurately. RESULTS: Intravoxel velocity variation improved temporal stability and robustness against small velocity changes. Time-varying pulsatile velocity variation affected CSF simulations, introducing periods of near-zero velocity and partial rephasing. Inclusion of diffusion effects was found to substantially reduce the CSF signal. Blood flow trajectory variations had minor effects, but B 1 + $$ {\mathrm{B}}_1^{+} $$ differences along the trajectory reduced DANTE efficiency in low- B 1 + $$ {\mathrm{B}}_1^{+} $$ areas. Introducing low-velocity pulsatility of both CSF and vessel wall helped explain the in vivo observed signal heterogeneity in both tissue types. CONCLUSION: The presented simulation framework facilitates a more comprehensive optimization of DANTE-SPACE sequence parameters. Furthermore, the simulation framework helps to explain observed contrasts in acquired data.


Asunto(s)
Algoritmos , Encéfalo , Simulación por Computador , Imagenología Tridimensional , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Imagenología Tridimensional/métodos , Velocidad del Flujo Sanguíneo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Flujo Pulsátil/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos
17.
Magn Reson Med ; 92(2): 605-617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38440807

RESUMEN

PURPOSE: Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS: Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS: Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION: Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.


Asunto(s)
Arterias Cerebrales , Imagen por Resonancia Magnética , Flujo Pulsátil , Humanos , Femenino , Masculino , Adulto , Anciano , Reproducibilidad de los Resultados , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiología , Flujo Pulsátil/fisiología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Angiografía por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
18.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R14-R24, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738294

RESUMEN

Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.


Asunto(s)
Envejecimiento , Arteria Celíaca , Ejercicio Físico , Humanos , Femenino , Ejercicio Físico/fisiología , Envejecimiento/fisiología , Adulto Joven , Anciano , Flujo Sanguíneo Regional , Circulación Esplácnica , Velocidad del Flujo Sanguíneo , Presión Arterial , Vasoconstricción , Presión Sanguínea/fisiología , Adulto , Factores de Edad
19.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R599-R608, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682242

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neurocognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between arterial pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age = 24.1 yr) and 15 patients with ME/CFS (mean age = 21.8 yr). All patients with ME/CFS had postural tachycardia syndrome (POTS). A 10-min 60° head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P < 0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS versus control. In ME/CFS, HUT significantly decreased CBV compared with control (-22.5% vs. -8.7%, P < 0.005). To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine, and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n = 4 N-back during HUT in ME/CFS similar to control (ME/CFS = 38.5 ± 5.5 vs. ME/CFS + PE= 65.6 ± 5.7 vs. Control 56.9 ± 7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. Although CO2 and acetazolamide had no effect on PhSI in ME/CFS, phenylephrine caused a significant reduction in PhSI (ME/CFS = 0.80 ± 0.03 vs. ME/CFS + PE= 0.69 ± 0.04, P < 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in patients with ME/CFS, perhaps related to improved neurovascular coupling, cerebral autoregulation, and maintenance of CBV.NEW & NOTEWORTHY We evaluated cognitive function before and after CO2, acetazolamide, and phenylephrine, which mitigate orthostatic reductions in cerebral blood velocity. Neither CO2 nor acetazolamide affected N-back testing (% correct answers) during an orthostatic challenge. Only phenylephrine improved upright N-back performance in ME/CFS, as it both blocked hyperventilation and increased CO2 significantly compared with those untreated. And only phenylephrine resulted in improved PSI values in both ME/CFS and control while upright, suggesting improved cerebral autoregulation.


Asunto(s)
Presión Sanguínea , Circulación Cerebrovascular , Intolerancia Ortostática , Fenilefrina , Humanos , Circulación Cerebrovascular/efectos de los fármacos , Fenilefrina/farmacología , Femenino , Masculino , Intolerancia Ortostática/fisiopatología , Adulto , Adulto Joven , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Síndrome de Fatiga Crónica/fisiopatología , Síndrome de Fatiga Crónica/tratamiento farmacológico , Pruebas de Mesa Inclinada , Cognición/efectos de los fármacos , Homeostasis , Estudios de Casos y Controles , Frecuencia Cardíaca/efectos de los fármacos , Presión Arterial/efectos de los fármacos , Síndrome de Taquicardia Postural Ortostática/fisiopatología , Síndrome de Taquicardia Postural Ortostática/tratamiento farmacológico
20.
J Vasc Res ; 61(1): 38-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38061338

RESUMEN

INTRODUCTION: The aim of the study was to evaluate characteristics and provide the normal values of wall shear stress (WSS) and flow turbulence (Tur), and the relationship between them in the carotid bifurcation based on an ultrasound vector flow imaging (V Flow) in healthy adults. METHODS: Max and mean WSS and Tur values at three segments (initial segments of internal and external carotid arteries [IICA and IECA]; distal segment of common carotid artery [DCCA]), both in anterior and posterior walls, were successfully obtained in 56 healthy adults, using ultrasound V Flow function. Relationship between mean WSS and Tur was further explored. RESULTS: The mean WSS value was 0.71 Pa, 0.86 Pa, and 0.96 Pa at IICA, IECA, and DCCA, respectively (IICA < IECA < DCCA, p < 0.05). The mean Tur value was 13.85%, 5.46%, and 4.17% at IICA, IECA, and DCCA, respectively (IICA > IECA > DCCA, p < 0.05). A cutoff value (WSS = 0.4 Pa) was selected and Tur values were significantly higher in group with WSS cutoff value <0.4 Pa than group with WSS cutoff value ≥0.4 Pa (p < 0.01). CONCLUSION: WSS and Tur are moderately negatively correlated, which can be used in the quantitative evaluation of carotid bifurcation and could be a potential dual-parameter tool in the clinical research for early detection of carotid atherosclerosis.


Asunto(s)
Arterias Carótidas , Enfermedades de las Arterias Carótidas , Adulto , Humanos , Arterias Carótidas/diagnóstico por imagen , Ultrasonografía , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Estrés Mecánico , Simulación por Computador , Velocidad del Flujo Sanguíneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA