Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.227
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(5): 553-562, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190707

RESUMEN

Rationale: Lung-protective mechanical ventilation strategies have been proven beneficial in the operating room (OR) and the ICU. However, differential practices in ventilator management persist, often resulting in adjustments of ventilator parameters when transitioning patients from the OR to the ICU. Objectives: To characterize patterns of ventilator adjustments during the transition of mechanically ventilated surgical patients from the OR to the ICU and assess their impact on 28-day mortality. Methods: Hospital registry study including patients undergoing general anesthesia with continued, controlled mechanical ventilation in the ICU between 2008 and 2022. Ventilator parameters were assessed 1 hour before and 6 hours after the transition. Measurements and Main Results: Of 2,103 patients, 212 (10.1%) died within 28 days. Upon OR-to-ICU transition, VT and driving pressure decreased (-1.1 ml/kg predicted body weight [IQR, -2.0 to -0.2]; P < 0.001; and -4.3 cm H2O [-8.2 to -1.2]; P < 0.001). Concomitantly, respiratory rates increased (+5.0 breaths/min [2.0 to 7.5]; P < 0.001), resulting overall in slightly higher mechanical power (MP) in the ICU (+0.7 J/min [-1.9 to 3.0]; P < 0.001). In adjusted analysis, increases in MP were associated with a higher 28-day mortality rate (adjusted odds ratio, 1.10; 95% confidence interval, 1.06-1.14; P < 0.001; adjusted risk difference, 0.7%; 95% confidence interval, 0.4-1.0, both per 1 J/min). Conclusion: During transition of mechanically ventilated patients from the OR to the ICU, ventilator adjustments resulting in higher MP were associated with a greater risk of 28-day mortality.


Asunto(s)
Quirófanos , Ventiladores Mecánicos , Humanos , Respiración Artificial , Muerte , Unidades de Cuidados Intensivos
2.
Proc Natl Acad Sci U S A ; 119(13): e2115276119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312360

RESUMEN

SignificanceThe treatment of hypoxemia that is refractory to the current standard of care is time-sensitive and requires skilled caregivers and use of specialized equipment (e.g., extracorporeal membrane oxygenation). Most patients experiencing refractory hypoxemia will suffer organ dysfunction, and death is common in this cohort. Here, we describe a new strategy to stabilize and support patients using a microfluidic device that administers oxygen gas directly to the bloodstream in real time and on demand using a process that we call sequential shear-induced bubble breakup. If successful, the described technology may help to avoid or decrease the incidence of ventilator-related lung injury from refractory hypoxemia.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Lesión Pulmonar , Oxigenación por Membrana Extracorpórea/efectos adversos , Humanos , Hipoxia , Dispositivos Laboratorio en un Chip , Oxígeno , Ventiladores Mecánicos/efectos adversos
3.
Clin Infect Dis ; 78(2): 259-268, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37740559

RESUMEN

BACKGROUND: Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are frequently caused by multidrug-resistant organisms. Patient-centered endpoints in clinical trials are needed to develop new antibiotics for HABP/VABP. Desirability of outcome ranking (DOOR) is a paradigm for the design, analysis, and interpretation of clinical trials based on a patient-centered, benefit-risk evaluation. METHODS: A multidisciplinary committee created an infectious diseases DOOR endpoint customized for HABP/VABP, incorporating infectious complications, serious adverse events, and mortality. We applied this to 2 previously completed, large randomized controlled trials for HABP/VABP. ZEPHyR compared vancomycin to linezolid and VITAL compared linezolid to tedizolid. For each trial, we evaluated the DOOR distribution and probability, including DOOR component and partial credit analyses. We also applied DOOR in subgroup analyses. RESULTS: In both trials, the HABP/VABP DOOR demonstrated similar overall clinical outcomes between treatment groups. In ZEPHyR, the probability that a participant treated with linezolid would have a more desirable outcome than a participant treated with vancomycin was 50.2% (95% confidence interval [CI], 45.1%--55.3%). In VITAL, the probability that a participant treated with tedizolid would have a more desirable outcome than a participant treated with linezolid was 48.7% (95% CI, 44.8%-52.6%). The DOOR component analysis revealed that participants treated with tedizolid had a less desirable outcome than those treated with linezolid when considering clinical response alone. However, participants with decreased renal function had improved overall outcomes with tedizolid. CONCLUSIONS: The HABP/VABP DOOR provided more granular information about clinical outcomes than is typically presented in clinical trials. HABP/VABP trials would benefit from prospectively using DOOR.


Asunto(s)
Neumonía Asociada a la Atención Médica , Neumonía Bacteriana , Neumonía Asociada al Ventilador , Humanos , Linezolid/uso terapéutico , Vancomicina/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Antibacterianos/uso terapéutico , Bacterias , Neumonía Asociada a la Atención Médica/tratamiento farmacológico , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Hospitales , Ventiladores Mecánicos
4.
Crit Care Med ; 52(7): 1021-1031, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563609

RESUMEN

OBJECTIVES: Nonconventional ventilators (NCVs), defined here as transport ventilators and certain noninvasive positive pressure devices, were used extensively as crisis-time ventilators for intubated patients with COVID-19. We assessed whether there was an association between the use of NCV and higher mortality, independent of other factors. DESIGN: This is a multicenter retrospective observational study. SETTING: The sample was recruited from a single healthcare system in New York. The recruitment period spanned from March 1, 2020, to April 30, 2020. PATIENTS: The sample includes patients who were intubated for COVID-19 acute respiratory distress syndrome (ARDS). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The primary outcome was 28-day in-hospital mortality. Multivariable logistic regression was used to derive the odds of mortality among patients managed exclusively with NCV throughout their ventilation period compared with the remainder of the sample while adjusting for other factors. A secondary analysis was also done, in which the mortality of a subset of the sample exclusively ventilated with NCV was compared with that of a propensity score-matched subset of the control group. Exclusive use of NCV was associated with a higher 28-day in-hospital mortality while adjusting for confounders in the regression analysis (odds ratio, 1.41; 95% CI [1.07-1.86]). In the propensity score matching analysis, the mortality of patients exclusively ventilated with NCV was 68.9%, and that of the control was 60.7% ( p = 0.02). CONCLUSIONS: Use of NCV was associated with increased mortality among patients with COVID-19 ARDS. More lives may be saved during future ventilator shortages if more full-feature ICU ventilators, rather than NCVs, are reserved in national and local stockpiles.


Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Síndrome de Dificultad Respiratoria , Ventiladores Mecánicos , Humanos , COVID-19/terapia , COVID-19/mortalidad , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/mortalidad , Ventiladores Mecánicos/provisión & distribución , Ventiladores Mecánicos/estadística & datos numéricos , New York/epidemiología , Respiración Artificial/estadística & datos numéricos
5.
Crit Care Med ; 52(5): 743-751, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214566

RESUMEN

OBJECTIVES: Ventilator dyssynchrony may be associated with increased delivered tidal volumes (V t s) and dynamic transpulmonary pressure (ΔP L,dyn ), surrogate markers of lung stress and strain, despite low V t ventilation. However, it is unknown which types of ventilator dyssynchrony are most likely to increase these metrics or if specific ventilation or sedation strategies can mitigate this potential. DESIGN: A prospective cohort analysis to delineate the association between ten types of breaths and delivered V t , ΔP L,dyn , and transpulmonary mechanical energy. SETTING: Patients admitted to the medical ICU. PATIENTS: Over 580,000 breaths from 35 patients with acute respiratory distress syndrome (ARDS) or ARDS risk factors. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients received continuous esophageal manometry. Ventilator dyssynchrony was identified using a machine learning algorithm. Mixed-effect models predicted V t , ΔP L,dyn , and transpulmonary mechanical energy for each type of ventilator dyssynchrony while controlling for repeated measures. Finally, we described how V t , positive end-expiratory pressure (PEEP), and sedation (Richmond Agitation-Sedation Scale) strategies modify ventilator dyssynchrony's association with these surrogate markers of lung stress and strain. Double-triggered breaths were associated with the most significant increase in V t , ΔP L,dyn , and transpulmonary mechanical energy. However, flow-limited, early reverse-triggered, and early ventilator-terminated breaths were also associated with significant increases in V t , ΔP L,dyn , and energy. The potential of a ventilator dyssynchrony type to increase V t , ΔP L,dyn , or energy clustered similarly. Increasing set V t may be associated with a disproportionate increase in high-volume and high-energy ventilation from double-triggered breaths, but PEEP and sedation do not clinically modify the interaction between ventilator dyssynchrony and surrogate markers of lung stress and strain. CONCLUSIONS: Double-triggered, flow-limited, early reverse-triggered, and early ventilator-terminated breaths are associated with increases in V t , ΔP L,dyn , and energy. As flow-limited breaths are more than twice as common as double-triggered breaths, further work is needed to determine the interaction of ventilator dyssynchrony frequency to cause clinically meaningful changes in patient outcomes.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Respiración Artificial/efectos adversos , Estudios Prospectivos , Ventiladores Mecánicos , Volumen de Ventilación Pulmonar , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/etiología , Biomarcadores
6.
J Pediatr ; 265: 113807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923196

RESUMEN

OBJECTIVE: To evaluate whether a high cumulative dose of systemic hydrocortisone affects brain development compared with placebo when initiated between 7 and 14 days after birth in ventilated infants born preterm. STUDY DESIGN: A double-blind, placebo-controlled, randomized trial was conducted in 16 neonatal intensive care units among infants born at <30 weeks of gestation or with a birth weight of <1250 g who were ventilator-dependent in the second week after birth. Three centers performed MRI at term-equivalent age. Brain injury was assessed on MRI using the Kidokoro scoring system and compared between the 2 treatment groups. Both total and regional brain volumes were calculated using an automatic segmentation method and compared using multivariable regression analysis adjusted for baseline variables. RESULTS: From the 3 centers, 78 infants participated in the study and 59 had acceptable MRI scans (hydrocortisone group, n = 31; placebo group, n = 28). Analyses of the median global brain abnormality score of the Kidokoro score showed no difference between the hydrocortisone and placebo groups (median, 7; IQR, 5-9 vs median, 8, IQR, 4-10, respectively; P = .92). In 39 infants, brain tissue volumes were measured, showing no differences in the adjusted mean total brain tissue volumes, at 352 ± 32 mL in the hydrocortisone group and 364 ± 51 mL in the placebo group (P = .80). CONCLUSIONS: Systemic hydrocortisone started in the second week after birth in ventilator-dependent infants born very preterm was not found to be associated with significant differences in brain development compared with placebo treatment. TRIAL REGISTRATION: The SToP-BPD study was registered with the Netherlands Trial Register (NTR2768; registered on 17 February 2011; https://www.trialregister.nl/trial/2640) and the European Union Clinical Trials Register (EudraCT, 2010-023777-19; registered on 2 November 2010; https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023777-19/NL).


Asunto(s)
Displasia Broncopulmonar , Hidrocortisona , Recién Nacido , Lactante , Humanos , Recien Nacido Prematuro , Displasia Broncopulmonar/tratamiento farmacológico , Ventiladores Mecánicos , Encéfalo/diagnóstico por imagen
7.
Respir Res ; 25(1): 142, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528524

RESUMEN

BACKGROUND: The underlying pathophysiological pathways how reverse triggering is being caused are not fully understood. Respiratory entrainment may be one of these mechanisms, but both terms are used interchangeably. We sought to characterize reverse triggering and the relationship with respiratory entrainment among mechanically ventilated children with and without acute lung injury. METHODS: We performed a secondary phyiology analysis of two previously published data sets of invasively mechanically ventilated children < 18 years with and without lung injury mechanically ventilated in a continuous or intermittent mandatory ventilation mode. Ventilator waveforms, electrical activity of the diaphragm measured with surface electromyography and oesophageal tracings were analyzed for entrained and non-entrained reverse triggered breaths. RESULTS: In total 102 measurements (3110 min) from 67 patients (median age 4.9 [1.8 ; 19,1] months) were analyzed. Entrained RT was identified in 12 (12%) and non-entrained RT in 39 (38%) recordings. Breathing variability for entrained RT breaths was lower compared to non-entrained RT breaths. We did not observe breath stacking during entrained RT. Double triggering often occurred during non-entrained RT and led to an increased tidal volume. Patients with respiratory entrainment related RT had a shorter duration of MV and length of PICU stay. CONCLUSIONS: Reverse triggering is not one entity but a clinical spectrum with different mechanisms and consequences. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Lesión Pulmonar Aguda , Respiración Artificial , Niño , Humanos , Preescolar , Respiración Artificial/efectos adversos , Estudios Prospectivos , Respiración , Ventiladores Mecánicos
8.
Curr Opin Crit Care ; 30(1): 89-96, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085854

RESUMEN

PURPOSE OF REVIEW: The response to positive end-expiratory pressure (PEEP) in patients with chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation depends on the underlying pathophysiology. This review focuses on the pathophysiology of COPD, especially intrinsic PEEP (PEEPi) and its consequences, and the benefits of applying external PEEP during assisted ventilation when PEEPi is present. RECENT FINDINGS: The presence of expiratory airflow limitation and increased airway resistance promotes the development of dynamic hyperinflation in patients with COPD during acute respiratory failure. Dynamic hyperinflation and the associated development of PEEPi increases work of breathing and contributes to ineffective triggering of the ventilator. In the presence of airflow limitation, application of external PEEP during patient-triggered ventilation has been shown to reduce inspiratory effort, facilitate ventilatory triggering and enhance patient-ventilator interaction. To minimize the risk of hyperinflation, it is advisable to limit the level of external PEEP during assisted ventilation after optimization of ventilator settings to about 70% of the level of PEEPi (measured during passive ventilation). SUMMARY: In patients with COPD and dynamic hyperinflation receiving assisted mechanical ventilation, the application of low levels of external PEEP can minimize work of breathing, facilitate ventilator triggering and improve patient-ventilator interaction.


Asunto(s)
Respiración con Presión Positiva , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Respiración Artificial , Enfermedad Pulmonar Obstructiva Crónica/terapia , Ventiladores Mecánicos , Resistencia de las Vías Respiratorias
9.
Curr Opin Crit Care ; 30(1): 35-42, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085871

RESUMEN

PURPOSE OF REVIEW: To discuss the role of pressure-volume curve (PV curve) in exploring elastic properties of the respiratory system and setting mechanical ventilator to reduce ventilator-induced lung injury. RECENT FINDINGS: Nowadays, quasi-static PV curves and loops can be easily obtained and analyzed at the bedside without disconnection of the patient from the ventilator. It is shown that this tool can provide useful information to optimize ventilator setting. For example, PV curves can assess for patient's individual potential for lung recruitability and also evaluate the risk for lung injury of the ongoing mechanical ventilation setting. SUMMARY: In conclusion, PV curve is an easily available bedside tool: its correct interpretation can be extremely valuable to enlighten potential for lung recruitability and select a high or low positive end-expiratory pressure (PEEP) strategy. Furthermore, recent studies have shown that PV curve can play a significant role in PEEP and driving pressure fine tuning: clinical studies are needed to prove whether this technique will improve outcome.


Asunto(s)
Respiración con Presión Positiva , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Respiración con Presión Positiva/métodos , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Pulmón , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Ventiladores Mecánicos
10.
Mol Biol Rep ; 51(1): 74, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175266

RESUMEN

BACKGROUND: Mechanical Ventilation (MV) is an essential mechanism of life support in the clinic. It may also lead to ventilator-induced acute lung injury (VILI) due to local alveolar overstretching and/or repeated alveolar collapse. However, the pathogenesis of VILI is not completely understood, and its occurrence and development may be related to physiological processes such as the inflammatory response, oxidative stress, and apoptosis. Some studies have found that the the apelin/APJ axis is an endogenous antagonistic mechanism activated during acute respiratory distress syndrome(ARDS), that can counteract the injury response and prevent uncontrolled lung injury. To indicate that apelin-13 plays a protective role in VILI, an animal model of VILI was established in this study to explore whether apelin-13 can alleviate VILI in rats by inhibiting inflammation, apoptosis and oxidative stress. METHODS: SD rats were divided into four groups: control, high tidal volume, high tidal volume + normal saline and high tidal volume + apelin-13. After tracheotomy, the rats in control maintained spontaneous breathing, and the other rats were connected to the small animal ventilator for 4 h to establish the rat VILI model. The mRNA expression of apelin was measured by real-time quantitative polymerase chain reaction(qRT-PCR), immunofluorescence and Western blotting(WB) were used to detect the expression level of APJ, and WB was used to detect the expression of the apoptotic proteins Bax and bcl-2. The degree of lung injury was evaluated by pathological staining of lung tissue,W/D ratio, and BALF total protein concentration. The expression of inflammatory factors(IL-1ß, IL-6, TNF-α) in alveolar lavage fluid was measured using ELISA. The activities of MPO and cat and the content of MDA, an oxidative product, in lung tissue were measured to evaluate the degree of oxidative stress in the lung. RESULTS: After treatment with apelin-13, the apelin/APJ axis in the lung tissue of VILI model rats was activated, and the effect was further enhanced. The pathological damage of lung tissue was alleviated, the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax was reversed, and the levels of the inflammatory cytokines IL-1ß, IL-6, TNF-α levels were all decreased. MPO activity and MDA content decreased, while CAT activity increased. CONCLUSION: The apelin/apj axis is activated in VILI. Overexpression of apelin-13 further plays a protective role in VILI, mainly by including reducing pathological damage, the inflammatory response, apoptosis and antioxidant stress in lung tissue, thus delaying the occurrence and development of VILI.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Animales , Ratas , Ratas Sprague-Dawley , Apelina/farmacología , Interleucina-6 , Factor de Necrosis Tumoral alfa , Proteína X Asociada a bcl-2/genética , Ventiladores Mecánicos
11.
Crit Care ; 28(1): 75, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486268

RESUMEN

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Asunto(s)
Aprendizaje Profundo , Respiración Artificial , Adulto , Humanos , Inteligencia Artificial , Pulmón , Respiración Artificial/métodos , Ventiladores Mecánicos
12.
Crit Care ; 28(1): 107, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566126

RESUMEN

BACKGROUND: Pre-clinical studies suggest that dyssynchronous diaphragm contractions during mechanical ventilation may cause acute diaphragm dysfunction. We aimed to describe the variability in diaphragm contractile loading conditions during mechanical ventilation and to establish whether dyssynchronous diaphragm contractions are associated with the development of impaired diaphragm dysfunction. METHODS: In patients receiving invasive mechanical ventilation for pneumonia, septic shock, acute respiratory distress syndrome, or acute brain injury, airway flow and pressure and diaphragm electrical activity (Edi) were recorded hourly around the clock for up to 7 days. Dyssynchronous post-inspiratory diaphragm loading was defined based on the duration of neural inspiration after expiratory cycling of the ventilator. Diaphragm function was assessed on a daily basis by neuromuscular coupling (NMC, the ratio of transdiaphragmatic pressure to diaphragm electrical activity). RESULTS: A total of 4508 hourly recordings were collected in 45 patients. Edi was low or absent (≤ 5 µV) in 51% of study hours (median 71 h per patient, interquartile range 39-101 h). Dyssynchronous post-inspiratory loading was present in 13% of study hours (median 7 h per patient, interquartile range 2-22 h). The probability of dyssynchronous post-inspiratory loading was increased with reverse triggering (odds ratio 15, 95% CI 8-35) and premature cycling (odds ratio 8, 95% CI 6-10). The duration and magnitude of dyssynchronous post-inspiratory loading were associated with a progressive decline in diaphragm NMC (p < 0.01 for interaction with time). CONCLUSIONS: Dyssynchronous diaphragm contractions may impair diaphragm function during mechanical ventilation. TRIAL REGISTRATION: MYOTRAUMA, ClinicalTrials.gov NCT03108118. Registered 04 April 2017 (retrospectively registered).


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Diafragma , Respiración Artificial/efectos adversos , Tórax , Ventiladores Mecánicos
13.
Biomed Eng Online ; 23(1): 30, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454458

RESUMEN

BACKGROUND: Critically ill patients undergoing liberation often encounter various physiological and clinical complexities and challenges. However, whether the combination of hyperbaric oxygen and in-cabin ventilator therapy could offer a comprehensive approach that may simultaneously address respiratory and potentially improve outcomes in this challenging patient population remain unclear. METHODS: This retrospective study involved 148 patients experiencing difficulty in liberation after tracheotomy. Inclusion criteria comprised ongoing mechanical ventilation need, lung inflammation on computed tomography (CT) scans, and Glasgow Coma Scale (GCS) scores of ≤ 9. Exclusion criteria excluded patients with active bleeding, untreated pneumothorax, cerebrospinal fluid leakage, and a heart rate below 50 beats per minute. Following exclusions, 111 cases were treated with hyperbaric oxygen combined cabin ventilator, of which 72 cases were successfully liberated (SL group) and 28 cases (NSL group) were not successfully liberated. The hyperbaric oxygen chamber group received pressurization to 0.20 MPa (2.0 ATA) for 20 min, followed by 60 min of ventilator oxygen inhalation. Successful liberation was determined by a strict process, including subjective and objective criteria, with a prolonged spontaneous breathing trial. GCS assessments were conducted to evaluate consciousness levels, with scores categorized as normal, mildly impaired, moderately impaired, or severely impaired. RESULTS: Patients who underwent treatment exhibited improved GCS, blood gas indicators, and cardiac function indexes. The improvement of GCS, partial pressure of oxygen (PaO2), oxygen saturation of blood (SaO2), oxygenation index (OI) in the SL group was significantly higher than that of the NSL group. However, there was no significant difference in the improvement of left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), and stroke volume (SV) between the SL group and the NSL group after treatment. CONCLUSIONS: Hyperbaric oxygen combined with in-cabin ventilator therapy effectively enhances respiratory function, cardiopulmonary function, and various indicators of critically ill patients with liberation difficulty after tracheostomy.


Asunto(s)
Oxigenoterapia Hiperbárica , Traqueostomía , Humanos , Estudios Retrospectivos , Oxigenoterapia Hiperbárica/métodos , Volumen Sistólico , Función Ventricular Izquierda , Enfermedad Crítica/terapia , Oxígeno , Ventiladores Mecánicos
14.
Pediatr Crit Care Med ; 25(1): e20-e30, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812030

RESUMEN

OBJECTIVES: To characterize respiratory culture practices for mechanically ventilated patients, and to identify drivers of culture use and potential barriers to changing practices across PICUs. DESIGN: Cross-sectional survey conducted May 2021-January 2022. SETTING: Sixteen academic pediatric hospitals across the United States participating in the BrighT STAR Collaborative. SUBJECTS: Pediatric critical care medicine physicians, advanced practice providers, respiratory therapists, and nurses. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We summarized the proportion of positive responses for each question within a hospital and calculated the median proportion and IQR across hospitals. We correlated responses with culture rates and compared responses by role. Sixteen invited institutions participated (100%). Five hundred sixty-eight of 1,301 (44%) e-mailed individuals completed the survey (median hospital response rate 60%). Saline lavage was common, but no PICUs had a standardized approach. There was the highest variability in perceived likelihood (median, IQR) to obtain cultures for isolated fever (49%, 38-61%), isolated laboratory changes (49%, 38-57%), fever and laboratory changes without respiratory symptoms (68%, 54-79%), isolated change in secretion characteristics (67%, 54-78%), and isolated increased secretions (55%, 40-65%). Respiratory cultures were likely to be obtained as a "pan culture" (75%, 70-86%). There was a significant correlation between higher culture rates and likelihood to obtain cultures for isolated fever, persistent fever, isolated hypotension, fever, and laboratory changes without respiratory symptoms, and "pan cultures." Respondents across hospitals would find clinical decision support (CDS) helpful (79%) and thought that CDS would help align ICU and/or consulting teams (82%). Anticipated barriers to change included reluctance to change (70%), opinion of consultants (64%), and concern for missing a diagnosis of ventilator-associated infections (62%). CONCLUSIONS: Respiratory culture collection and ordering practices were inconsistent, revealing opportunities for diagnostic stewardship. CDS would be generally well received; however, anticipated conceptual and psychologic barriers to change must be considered.


Asunto(s)
Unidades de Cuidado Intensivo Pediátrico , Ventiladores Mecánicos , Niño , Humanos , Estados Unidos , Estudios Transversales , Ventiladores Mecánicos/efectos adversos , Encuestas y Cuestionarios , Actitud del Personal de Salud , Fiebre/etiología
15.
Acta Anaesthesiol Scand ; 68(2): 226-235, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37751991

RESUMEN

BACKGROUND: Ventilator-associated lower respiratory tract infections (VA-LRTI) increase morbidity and mortality in intensive care unit (ICU) patients. Higher incidences of VA-LRTI have been reported among COVID-19 patients requiring invasive mechanical ventilation (IMV). The primary objectives of this study were to describe clinical characteristics, incidence, and risk factors comparing patients who developed VA-LRTI to patients who did not, in a cohort of Swedish ICU patients with acute hypoxemic respiratory failure due to COVID-19. Secondary objectives were to decipher changes over the three initial pandemic waves, common microbiology and the effect of VA-LTRI on morbidity and mortality. METHODS: We conducted a multicenter, retrospective cohort study of all patients admitted to 10 ICUs in southeast Sweden between March 1, 2020 and May 31, 2021 because of acute hypoxemic respiratory failure due to COVID-19 and were mechanically ventilated for at least 48 h. The primary outcome was culture verified VA-LRTI. Patient characteristics, ICU management, clinical course, treatments, microbiological findings, and mortality were registered. Logistic regression analysis was conducted to determine risk factors for first VA-LRTI. RESULTS: Of a total of 536 included patients, 153 (28.5%) developed VA-LRTI. Incidence rate of first VA-LRTI was 20.8 per 1000 days of IMV. Comparing patients with VA-LRTI to those without, no differences in mortality, age, sex, or number of comorbidities were found. Patients with VA-LRTI had fewer ventilator-free days, longer ICU stay, were more frequently ventilated in prone position, received corticosteroids more often and were more frequently on antibiotics at intubation. Regression analysis revealed increased adjusted odds-ratio (aOR) for first VA-LRTI in patients treated with corticosteroids (aOR 2.64 [95% confidence interval [CI]] [1.31-5.74]), antibiotics at intubation (aOR 2.01 95% CI [1.14-3.66]), and days of IMV (aOR 1.05 per day of IMV, 95% CI [1.03-1.07]). Few multidrug-resistant pathogens were identified. Incidence of VA-LRTI increased from 14.5 per 1000 days of IMV during the first wave to 24.8 per 1000 days of IMV during the subsequent waves. CONCLUSION: We report a high incidence of culture-verified VA-LRTI in a cohort of critically ill COVID-19 patients from the first three pandemic waves. VA-LRTI was associated with increased morbidity but not 30-, 60-, or 90-day mortality. Corticosteroid treatment, antibiotics at intubation and time on IMV were associated with increased aOR of first VA-LRTI.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Infecciones del Sistema Respiratorio , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Suecia/epidemiología , Estudios Retrospectivos , Estudios de Cohortes , Respiración Artificial , Unidades de Cuidados Intensivos , Ventiladores Mecánicos , Factores de Riesgo , Corticoesteroides , Antibacterianos/uso terapéutico , Insuficiencia Respiratoria/epidemiología , Insuficiencia Respiratoria/terapia
16.
Am J Respir Crit Care Med ; 207(5): 533-543, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470240

RESUMEN

Reverse triggering dyssynchrony is a frequent phenomenon recently recognized in sedated critically ill patients under controlled ventilation. It occurs in at least 30-55% of these patients and often occurs in the transition from fully passive to assisted mechanical ventilation. During reverse triggering, patient inspiratory efforts start after the passive insufflation by mechanical breaths. The most often referred mechanism is the entrainment of the patient's intrinsic respiratory rhythm from the brainstem respiratory centers to periodic mechanical insufflations from the ventilator. However, reverse triggering might also occur because of local reflexes without involving the respiratory rhythm generator in the brainstem. Reverse triggering is observed during the acute phase of the disease, when patients may be susceptible to potential deleterious consequences of injurious or asynchronous efforts. Diagnosing reverse triggering might be challenging and can easily be missed. Inspection of ventilator waveforms or more sophisticated methods, such as the electrical activity of the diaphragm or esophageal pressure, can be used for diagnosis. The occurrence of reverse triggering might have clinical consequences. On the basis of physiological data, reverse triggering might be beneficial or injurious for the diaphragm and the lung, depending on the magnitude of the inspiratory effort. Reverse triggering can cause breath-stacking and loss of protective lung ventilation when triggering a second cycle. Little is known about how to manage patients with reverse triggering; however, available evidence can guide management on the basis of physiological principles.


Asunto(s)
Respiración Artificial , Respiración , Humanos , Ventiladores Mecánicos , Pulmón , Diafragma
17.
Am J Respir Crit Care Med ; 207(1): 17-28, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36583619

RESUMEN

Rationale: Pediatric-specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients' readiness for extubation. Methods: Twenty-six international experts comprised a multiprofessional panel to establish pediatrics-specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. A systematic review was conducted for questions that did not meet an a priori threshold of ⩾80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence and drafted and voted on the recommendations. Measurements and Main Results: Three questions related to systematic screening using an extubation readiness testing bundle and a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ⩾80% agreement. For the remaining eight questions, five systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials, measures of respiratory muscle strength, assessment of risk of postextubation upper airway obstruction and its prevention, use of postextubation noninvasive respiratory support, and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. Conclusions: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.


Asunto(s)
Respiración Artificial , Sepsis , Humanos , Niño , Respiración Artificial/métodos , Desconexión del Ventilador/métodos , Ventiladores Mecánicos , Extubación Traqueal/métodos
18.
Am J Respir Crit Care Med ; 208(1): 39-48, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36973007

RESUMEN

Rationale: Breathing difficulties are highly stressful. In critically ill patients, they are associated with an increased risk of posttraumatic manifestations. Dyspnea, the corresponding symptom, cannot be directly assessed in noncommunicative patients. This difficulty can be circumvented using observation scales such as the mechanical ventilation-respiratory distress observation scale (MV-RDOS). Objective: To investigate the performance and responsiveness of the MV-RDOS to infer dyspnea in noncommunicative intubated patients. Methods: Communicative and noncommunicative patients exhibiting breathing difficulties under mechanical ventilation were prospectively included and assessed using a dyspnea visual analog scale, MV-RDOS, EMG activity of alae nasi and parasternal intercostals, and EEG signatures of respiratory-related cortical activation (preinspiratory potentials). Inspiratory-muscle EMG and preinspiratory cortical activities are surrogates of dyspnea. Assessments were conducted at baseline, after adjustment of ventilator settings, and, in some cases, after morphine administration. Measurements and Main Results: Fifty patients (age, 67 [(interquartile interval [IQR]), 61-76] yr; Simplified Acute Physiology Score II, 52 [IQR, 35-62]) were included, 25 of whom were noncommunicative. Relief occurred in 25 (50%) patients after ventilator adjustments and in 21 additional patients after morphine administration. In noncommunicative patients, MV-RDOS score decreased from 5.5 (IQR, 4.2-6.6) at baseline to 4.2 (IQR, 2.1-4.7; P < 0.001) after ventilator adjustments and 2.5 (IQR, 2.1-4.2; P = 0.024) after morphine administration. MV-RDOS and alae nasi/parasternal EMG activities were positively correlated (ρ = 0.41 and 0.37, respectively). MV-RDOS scores were higher in patients with EEG preinspiratory potentials (4.9 [IQR, 4.2-6.3] vs. 4.0 [IQR, 2.1-4.9]; P = 0.002). Conclusions: The MV-RDOS seems able to detect and monitor respiratory symptoms reasonably well in noncommunicative intubated patients. Clinical trial registered with www.clinicaltrials.gov (NCT02801838).


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Anciano , Humanos , Disnea/etiología , Disnea/terapia , Disnea/diagnóstico , Derivados de la Morfina , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/diagnóstico , Ventiladores Mecánicos/efectos adversos
19.
Acta Paediatr ; 113(4): 709-715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38156363

RESUMEN

AIM: Review changes in neonatal ventilation practice within our regional transport service, Embrace, identifying interventions with greatest impact on improved rates of normocapnia during transfer. METHODS: Using internal transport databases and UK Neonatal Transport Group data submissions, we tracked local and national rates of ventilation and normocapnia. We correlated this with internal changes in practice, including introduction of new equipment, staffing changes, educational interventions and quality improvement projects. RESULTS: Data demonstrated improvement in normocapnia rates benchmarked against national figures, which was not explained by changes in ventilation methods or rates, or by changes in availability of post-transfer gases. Greatest improvement was identified following introduction of transcutaneous CO2 monitoring and ventilators enabling volume-guided ventilation strategies. Additionally, although less quantifiable, educational and quality improvement interventions, and case review mechanisms were felt to be influential. CONCLUSION: Volume guided ventilation and transcutaneous CO2 monitoring have had a positive influence on the maintenance of normocapnia during transfer at Embrace Transport Service, although introduction of new equipment still presents challenges which must be overcome. Recognising the significant impact of these technologies allows for ongoing financial, time and educational investment to emphasise their importance and ensure appropriate awareness of limitations and troubleshooting options, maximising their positive impact.


Asunto(s)
Dióxido de Carbono , Respiración , Recién Nacido , Humanos , Pulmón , Respiración Artificial , Ventiladores Mecánicos
20.
Eur J Anaesthesiol ; 41(6): 438-446, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385449

RESUMEN

BACKGROUND: Lung protective ventilation is considered standard of care in the intensive care unit. However, modifying the ventilator settings can be challenging and is time consuming. Closed loop modes of ventilation are increasingly attractive for use in critically ill patients. With closed loop ventilation, settings that are typically managed by the ICU professionals are under control of the ventilator's algorithms. OBJECTIVES: To describe the effectiveness, safety, efficacy and workload with currently available closed loop ventilation modes. DESIGN: Systematic review of randomised clinical trials. DATA SOURCES: A comprehensive systematic search in PubMed, Embase and the Cochrane Central register of Controlled Trials search was performed in January 2023. ELIGIBILITY CRITERIA: Randomised clinical trials that compared closed loop ventilation with conventional ventilation modes and reported on effectiveness, safety, efficacy or workload. RESULTS: The search identified 51 studies that met the inclusion criteria. Closed loop ventilation, when compared with conventional ventilation, demonstrates enhanced management of crucial ventilator variables and parameters essential for lung protection across diverse patient cohorts. Adverse events were seldom reported. Several studies indicate potential improvements in patient outcomes with closed loop ventilation; however, it is worth noting that these studies might have been underpowered to conclusively demonstrate such benefits. Closed loop ventilation resulted in a reduction of various aspects associated with the workload of ICU professionals but there have been no studies that studied workload in sufficient detail. CONCLUSIONS: Closed loop ventilation modes are at least as effective in choosing correct ventilator settings as ventilation performed by ICU professionals and have the potential to reduce the workload related to ventilation. Nevertheless, there is a lack of sufficient research to comprehensively assess the overall impact of these modes on patient outcomes, and on the workload of ICU staff.


Asunto(s)
Unidades de Cuidados Intensivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Ventiladores Mecánicos , Carga de Trabajo , Humanos , Respiración Artificial/métodos , Respiración Artificial/instrumentación , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Cuidados Críticos/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA