Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.333
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508309

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Asunto(s)
Interleucina-13 , Macrófagos Alveolares , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas no Estructurales Virales , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Interleucina-13/metabolismo , Interleucina-13/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Macrófagos Alveolares/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Regulación hacia Arriba
2.
PLoS Pathog ; 19(12): e1011872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38096325

RESUMEN

Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus. Here we describe the first crystal structure of the PRRSV PLP2 domain both in the presence and absence of its ubiquitin substrate, which reveals unique structural differences in this viral domain compared to PLP2 from EAV. To probe the role of PRRSV PLP2 deubiquitinating activity in host immune evasion, we selectively removed this activity from the domain by mutagenesis and found that the viral domain could no longer downregulate cellular interferon production. Interestingly, unlike EAV, and also unlike the situation for MERS-CoV, we found that recombinant PRRSV carrying PLP2 DUB-specific mutations faces significant selective pressure to revert to wild-type virus in MARC-145 cells, suggesting that the PLP2 DUB activity, which in PRRSV is present as three different versions of viral protein nsp2 expressed during infection, is critically important for PRRSV replication.


Asunto(s)
Equartevirus , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Caballos , Porcinos , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Mutagénesis , Péptido Hidrolasas/genética , Replicación Viral , Interferones/genética , Proteínas no Estructurales Virales/metabolismo
3.
Nucleic Acids Res ; 51(19): 10752-10767, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739415

RESUMEN

G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas no Estructurales Virales/metabolismo , ADN Helicasas/genética , Replicación Viral/genética , ARN
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217603

RESUMEN

Recent breakthroughs in gene-editing technologies that can render individual animals fully resistant to infections may offer unprecedented opportunities for controlling future epidemics in farm animals. Yet, their potential for reducing disease spread is poorly understood as the necessary theoretical framework for estimating epidemiological effects arising from gene-editing applications is currently lacking. Here, we develop semistochastic modeling approaches to investigate how the adoption of gene editing may affect infectious disease prevalence in farmed animal populations and the prospects and time scale for disease elimination. We apply our models to the porcine reproductive and respiratory syndrome (PRRS), one of the most persistent global livestock diseases to date. Whereas extensive control efforts have shown limited success, recent production of gene-edited pigs that are fully resistant to the PRRS virus have raised expectations for eliminating this deadly disease. Our models predict that disease elimination on a national scale would be difficult to achieve if gene editing was used as the only disease control. However, from a purely epidemiological perspective, disease elimination may be achievable within 3 to 6 y, if gene editing were complemented with widespread and sufficiently effective vaccination. Besides strategic distribution of genetically resistant animals, several other key determinants underpinning the epidemiological impact of gene editing were identified.


Asunto(s)
Edición Génica , Ganado/genética , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Vacunación , Animales , Sistemas CRISPR-Cas , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Prueba de Estudio Conceptual , Porcinos
5.
Proc Natl Acad Sci U S A ; 119(29): e2201169119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858300

RESUMEN

Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1ß. We show that nsp1ß is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1ß residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.


Asunto(s)
Factores de Restricción Antivirales , ADN Helicasas , Evasión Inmune , Proteínas de Unión a Poli-ADP-Ribosa , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Proteínas no Estructurales Virales , eIF-2 Quinasa , Animales , Factores de Restricción Antivirales/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés/virología , Porcinos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , eIF-2 Quinasa/metabolismo
6.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776134

RESUMEN

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Asunto(s)
Polisacáridos , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Glicosilación , Animales , Porcinos , Polisacáridos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Receptores de Superficie Celular/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Envoltura Viral/metabolismo
7.
J Virol ; 97(3): e0168922, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916907

RESUMEN

Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1ß, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , China/epidemiología , Citocinas , Variación Genética , Genoma Viral , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Virulencia/genética
8.
J Virol ; 97(1): e0184322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36622220

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the global pig industry, which modulates the host's innate antiviral immunity to achieve immune evasion. RIG-I-like receptors (RLRs) sense viral RNA and activate the interferon signaling pathway. LGP2, a member of the RLR family, plays an important role in regulating innate immunity. However, the role of LGP2 in virus infection is controversial. Whether LGP2 has a role during infection with PRRSV remains unclear. Here, we found that LGP2 overexpression restrained the replication of PRRSV, while LGP2 silencing facilitated PRRSV replication. LGP2 was prone to interact with MDA5 and enhanced viral RNA enrichment and recognition by MDA5, thus promoting the activation of RIG-I/IRF3 and NF-κB signaling pathways and reinforcing the expression of proinflammatory cytokines and type I interferon during PRRSV infection. Meanwhile, there was a decreased protein expression of LGP2 upon PRRSV infection in vitro. PRRSV Nsp1 and Nsp2 interacted with LGP2 and promoted K63-linked ubiquitination of LGP2, ultimately leading to the degradation of LGP2. These novel findings indicate that LGP2 plays a role in regulating PRRSV replication through synergistic interaction with MDA5. Moreover, targeting LGP2 is responsible for PRRSV immune evasion. Our work describes a novel mechanism of virus-host interaction and provides the basis for preventing and controlling PRRSV. IMPORTANCE LGP2, a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), shows higher-affinity binding to RNA and work synergism with RIG-I or MDA5. However, LGP2 has divergent responses to different viruses, which remains controversial in antiviral immune responses. Here, we present the detailed process of LGP2 in positively regulating the anti-PRRSV response. Upon PRRSV infection, LGP2 was prone to bind to MDA5 and enhanced MDA5 signaling, manifesting the enrichment of viral RNA on MDA5 and the activation of downstream IRF3 and NF-κB, which results in increased proinflammatory cytokines and type I interferon expression, ultimately inhibiting PRRSV at the early stage of infection. Moreover, PRRSV Nsp1 and Nsp2 interacted with LGP2 via ubiquitin-proteasome pathways, thus blocking LGP2-mediated immune response. This research helps us understand the host recognition and innate antiviral response to PRRSV infection by neglected pattern recognition receptors, which sheds light on the detailed mechanism of virus-host interaction.


Asunto(s)
Interferón Tipo I , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Helicasas , Animales , Inmunidad Innata , FN-kappa B/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , ARN Helicasas/metabolismo , ARN Viral/genética , Transducción de Señal/genética , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología
9.
Microb Pathog ; 190: 106633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554778

RESUMEN

Interferon-stimulated gene product 15 (ISG15) can be conjugated to substrates through ISGylation. Currently, the E3 ligase for porcine ISGylation remains unclear. Here, we identified porcine HERC5 and HERC6 (pHERC5/6) as ISGylation E3 ligases with pHERC6 acting as a major one by reconstitution of porcine ISGylation system in HEK-293 T cell via co-transfecting E1, E2 and porcine ISG15(pISG15) genes. Meanwhile, our data demonstrated that co-transfection of pISG15 and pHERC5/6 was sufficient to confer ISGylation, suggesting E1 and E2 of ISGylation are interchangeable between human and porcine. Using an immunoprecipitation based ISGylation analysis, our data revealed pHERC6 was a substrate for ISGylation and confirmed that K707 and K993 of pHERC6 were auto-ISGylation sites. Mutation of these sites reduced pHERC6 half-life and inhibited ISGylation, suggesting that auto-ISGylation of pHERC6 was required for effective ISGylation. Conversely, sustained ISGylation induced by overexpression of pISG15 and pHERC6 could be inhibited by a well-defined porcine ISGylation antagonist, the ovarian tumor (OTU) protease domain of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-nsp2 and PRRSV-nsp1ß, further indicating such method could be used for identification of virus-encoded ISG15 antagonist. In conclusion, our study contributes new insights towards porcine ISGylation system and provides a novel tool for screening viral-encoded ISG15 antagonist.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitinas , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Porcinos , Humanos , Células HEK293 , Ubiquitinas/metabolismo , Ubiquitinas/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Citocinas/metabolismo , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética
10.
Vet Res ; 55(1): 28, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449049

RESUMEN

The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Células T Auxiliares Foliculares , Anticuerpos Neutralizantes , China , Secuencia de Consenso
11.
Virus Genes ; 60(2): 186-193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368577

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a variable virus, whose spread cannot be totally stopped by vaccination. PRRSV infection results in abortion and respiratory symptoms in pregnant pigs. One crucial component of the anti-viral infection strategy is microRNA (miRNA), a class of multifunctional small molecules. It is unknown whether miR-339-5p can specifically target the PRRSV gene and prevent the virus from replicating, despite the fact that miR-339-5p is markedly up-regulated during the PRRSV infection. In this pursuit, the present study revealed that the two PRRSV areas targeted by miR-339-5p were PRRSV nsp2-3378 to 3403 and PRRSV nsp2-3112 to 3133 using the miRanda program. Dual luciferase reporter assays showed that the miR-339-5p target region of the PRRSV gene sequence exhibited 100% homology and was highly conserved. Furthermore, the ability of miR-339-5p to target PRRSV gene areas was verified. It was found that the overexpression of miR-339-5p markedly reduced the PRRSV replication through PRRSV infection trials. The precursor sequence of ssc-miR-339-5p was amplified using the DNA of pig lung tissue as a template in order to create a fragment of 402 bp of porcine-derived miR-339-5p precursor sequence, which was then used to produce the eukaryotic expression plasmid of miR-339-5p. In conclusion, miR-339-5p can target the specific PRRSV gene areas and prevent PRRSV replication, offering fresh perspectives for the creation of medications that combat the PRRSV infection.


Asunto(s)
MicroARNs , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Línea Celular , MicroARNs/genética , MicroARNs/metabolismo , Genes Virales , Síndrome Respiratorio y de la Reproducción Porcina/genética , Replicación Viral/genética
12.
BMC Vet Res ; 20(1): 255, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867209

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) infection during late gestation substantially lowers fetal viability and survival. In a previous genome-wide association study, a single nucleotide polymorphism on chromosome 7 was significantly associated with probability of fetuses being viable in response to maternal PRRSV-2 infection at 21 days post maternal inoculation. The iodothyronine deiodinase 2 (DIO2) gene, located ~ 14 Kilobase downstream of this SNP, was selected as a priority candidate related to fetal susceptibility following maternal PRRSV-2 infection. Our objectives were to identify mutation(s) within the porcine DIO2 gene and to determine if they were associated with fetal outcomes after PRRSV-2 challenge. Sequencing of the DIO2, genotyping identified variants, and association of DIO2 genotypes with fetal phenotypes including DIO2 mRNA levels, viability, survival, viral loads, cortisol and thyroid hormone levels, and growth measurements were conducted. RESULTS: A missense variant (p.Asn91Ser) was identified in the parental populations from two independent PRRSV-2 challenge trials. This variant was further genotyped to determine association with fetal PRRS outcomes. DIO2 mRNA levels in fetal heart and kidney differed by the genotypes of Asn91Ser substitution with significantly greater DIO2 mRNA expression in heterozygotes compared with wild-type homozygotes (P < 0.001 for heart, P = 0.002 for kidney). While Asn91Ser did not significantly alter fetal viability and growth measurements, interaction effects of the variant with fetal sex or trial were identified for fetal viability or crown rump length, respectively. However, this mutation was not related to dysregulation of the hypothalamic-pituitary-adrenal and thyroid axis, indicated by no differences in circulating cortisol, T4, and T3 levels in fetuses of the opposing genotypes following PRRSV-2 infection. CONCLUSIONS: The present study suggests that a complex relationship among DIO2 genotype, DIO2 expression, fetal sex, and fetal viability may exist during the course of fetal PRRSV infection. Our study also proposes the increase in cortisol levels, indicative of fetal stress response, may lead to fetal complications, such as fetal compromise, fetal death, or premature farrowing, during PRRSV infection.


Asunto(s)
Yoduro Peroxidasa , Mutación Missense , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Femenino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Embarazo , Yodotironina Deyodinasa Tipo II , Genotipo , Feto/virología
13.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650730

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important virus within the swine industry. The virus causes respiratory disease and reproductive failure. Two species of PRRSV-I and II are co-dominant, yet no effective vaccination strategy has been developed to protect against these two types. With an aim to develop a chimeric vaccine strain to protect against both types, in this study, a chimeric porcine reproductive and respiratory syndrome virus (PRRSV) type I and II was rescued using reverse genetics for the first time. Four chimeric infectious clones were designed based on the genomic arrangement of the structural proteins. However, only the clone carrying the transcriptional regulatory sequence (TRS) and ORF6 of a PRRSV-I and ORF6 of a PRRSV-II generated a viable recombinant virus, suggesting that concurrent expression of ORF6 from both parental viruses is essential for the recovery of type I and II chimeric PRRSV. The chimeric virus showed significantly lower replication ability than its parental strains in vitro, which was improved by serial passaging. In vivo, groups of pigs were inoculated with either the chimeric virus, one of the parental strains, or PBS. The chimeric virus replicated in pig tissue and was detected in serum 7 days post-inoculation. Serum neutralization tests indicated that pigs inoculated with the chimeric virus elicited neutralizing antibodies that inhibited infection with strains of both species and with greater coverage than the parental viruses. In conclusion, the application of this technique to construct a chimeric PRRSV holds promise for the development of a highly effective modified live vaccine candidate. This is particularly significant since there are currently no approved commercial divalent vaccines available to combat PRRSV-I and II co-infections.


Asunto(s)
Coinfección , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Anticuerpos Neutralizantes , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Vacunación , Vacunas Atenuadas/genética
14.
J Virol ; 96(7): e0000322, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35293774

RESUMEN

MicroRNAs (miRNAs) play an important role in the virus-host interaction. Our previous work has indicated that the expression level of miR-10a increased in porcine alveolar macrophages (PAMs) during porcine reproductive and respiratory syndrome virus (PRRSV) infection and further inhibited viral replication through downregulates the expression of host molecule signal-recognition particle 14 (SRP14) protein. However, the molecular mechanism of miR-10a increased after PRRSV infection remains unknown. In the present study, transcription factor interferon regulatory factor 8 (IRF8) was identified as a negative regulator of miR-10a. PRRSV infection decreases the expression level of IRF8 in PAMs, leading to upregulating miR-10a expression to play an anti-PRRSV role. Meanwhile, this work first proved that IRF8 promoted PRRSV replication in an miR-10a-dependent manner. Further, we explained that SRP14, the target gene of miR-10a, promotes the synthesis of the PRRSV genome by interacting with the viral components Nsp2, thus facilitating PRRSV replication. In conclusion, we identified a novel IRF8-miR-10a-SRP14 regulatory pathway against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new antiviral strategies to control PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has rapidly spread to the global pig industry and caused incalculable economic damage since first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. Understanding the molecular mechanisms of host resistance to PRRSV infection is necessary to develop safe and effective strategies to control PRRSV. During viral infection, miRNAs play vital roles in regulating the expression of viral or host genes at the posttranscriptional level. The significance of our study is that we revealed the transcriptional regulation mechanism of the antiviral molecule miR-10a after PRRSV infection. Moreover, our research also explained the mechanism of host molecule SRP14, the target gene of miR-10a regulating PRRSV replication. Thus, we report a novel regulatory pathway of IRF8-miR-10a-SRP14 against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new control measures for future PRRSV outbreaks.


Asunto(s)
MicroARNs , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Antivirales/metabolismo , Línea Celular , Regulación de la Expresión Génica/inmunología , Interacciones Microbiota-Huesped/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/inmunología , Macrófagos Alveolares , MicroARNs/genética , MicroARNs/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos , Replicación Viral/genética
15.
J Virol ; 96(6): e0000522, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080428

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to global swine industry. As an intracellular obligate pathogen, PRRSV exploits host cellular machinery to establish infection. The endocytic sorting complex required for transport (ESCRT) system has been shown to participate in different life cycle stages of multiple viruses. In the present study, a systematic small interference RNA screening assay identified that certain ESCRT components contributed to PRRSV infection. Among them, tumor susceptibility gene 101 (TSG101) was demonstrated to be important for PRRSV infection by knockdown and overexpression assays. TSG101 was further revealed to be involved in virion formation rather than viral attachment, internalization, RNA replication and nucleocapsid (N) protein translation within the first round of PRRSV life cycle. In detail, TSG101 was determined to specially interact with PRRSV N protein and take effect on its subcellular localization along with the early secretory pathway. Taken together, these results provide evidence that TSG101 is a proviral cellular factor for PRRSV assembly, which will be a promising target to interfere with the viral infection. IMPORTANCE PRRSV infection results in a serious swine disease affecting pig farming in the world. However, efficient prevention and control of PRRSV is hindered by its complicated infection process. Until now, our understanding of PRRSV assembly during infection is especially limited. Here, we identified that TSG101, an ESCRT-I subunit, facilitated virion formation of PRRSV via interaction with the viral N protein along with the early secretory pathway. Our work actually expands the knowledge of PRRSV infection and provides a novel therapeutic target for prevention and control of the virus.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Nucleocápside , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vías Secretoras , Factores de Transcripción , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Nucleocápside/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN/metabolismo , Vías Secretoras/fisiología , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virión/metabolismo , Replicación Viral
16.
Microb Pathog ; 180: 106158, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201637

RESUMEN

PRRSV-1 has caused more clinical infections in pigs in Chinese swine herds in recent years, however, the pathogenicity of PRRSV-1 in China is unclear. In order to study the pathogenicity of PRRSV-1, in this study, a PRRSV-1 strain, 181187-2, was isolated in primary alveolar macrophage (PAM) cells from a farm where abortions had been reported in China. The complete genome of 181187-2 was 14932 bp excluding Poly A, with 54-amino acid continuous deletion in the Nsp2 gene and 1 amino deletion in ORF3 gene compared with LV. Additionally, the piglets inoculated with strain 181187-2 by intranasal and intranasal plus intramuscular injection, animal experiments showed clinical symptoms including transient fever and depression, with no death. The obvious histopathological lesions including interstitial pneumonia and lymph node hemorrhage, and there were no significant differences in clinical symptoms and histopathological lesions with different challenge ways. Our results indicated that PRRSV -1 181187-2 was a moderately pathogenic strain in piglets.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virulencia , Secuencia de Aminoácidos , Genoma Viral , Filogenia , China
17.
Microb Pathog ; 183: 106328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661073

RESUMEN

Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus Vaccinia/genética , Viremia/prevención & control , Vacunación , Inmunización , ADN , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
Virol J ; 20(1): 79, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101205

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen, characterized by its genetic and antigenic variation. The PRRSV vaccine is widely used, however, the unsatisfied heterologic protection and the risk of reverse virulence raise the requirement to find some new anti-PRRSV strategies for disease control. Tylvalosin tartrate is used to inhibit PRRSV in the field non-specifically, however, the mechanism is still less known. METHODS: The antiviral effects of Tylvalosin tartrates from three producers were evaluated in a cell inoculation model. Their safety and efficacy concentrations, and effecting stage during PRRSV infection were analyzed. And, the Tylvalosin tartrates regulated genes and pathways which are potentially related to the anti-viral effect were further explored by using transcriptomics analysis. Last, the transcription level of six anti-virus-related DEGs was selected to confirm by qPCR, and the expression level of HMOX1, a reported anti-PRRSV gene, was proved by western blot. RESULTS: The safety concentrations of Tylvalosin tartrates from three different producers were 40 µg/mL (Tyl A, Tyl B, and Tyl C) in MARC-145 cells and 20 µg/mL (Tyl A) or 40 µg/mL (Tyl B and Tyl C) in primary pulmonary alveolar macrophages (PAMs) respectively. Tylvalosin tartrate can inhibit PRRSV proliferation in a dose-dependent manner, causing more than 90% proliferation reduction at 40 µg/mL. But it shows no virucidal effect, and only achieves the antiviral effect via long-term action on the cells during the PRRSV proliferation. Furthermore, GO terms and KEGG pathway analysis was carried out based on the RNA sequencing and transcriptomic data. It was found that the Tylvalosin tartrates can regulate the signal transduction, proteolysis, and oxidation-reduction process, as well as some pathways such as protein digestion and absorption, PI3K-Akt signaling, FoxO signaling, and Ferroptosis pathways, which might relate to PRRSV proliferation or host innate immune response, but further studies still need to confirm it. Among them, six antivirus-related genes HMOX1, ATF3, FTH1, FTL, NR4A1, and CDKN1A were identified to be regulated by Tylvalosin tartrate, and the increased expression level of HMOX1 was further confirmed by western blot. CONCLUSIONS: Tylvalosin tartrate can inhibit PRRSV proliferation in vitro in a dose-dependent manner. The identified DEGs and pathways in transcriptomic data will provide valuable clues for further exploring the host cell restriction factors or anti-PRRSV target.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Tartratos/metabolismo , Tartratos/farmacología , Transcriptoma , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Macrófagos Alveolares , Replicación Viral
19.
Arch Virol ; 168(8): 205, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436532

RESUMEN

In this study, an NADC34-like strain of porcine reproductive and respiratory syndrome virus (PRRSV), YC-2020, was isolated from a pig farm in Yuncheng, Shanxi Province, China. Phylogenetic and molecular evolutionary analysis showed that the genome sequence of YC-2020 was very similar to those of NADC34-like PRRSV strains in the ORF2-7 region. However, it was more closely related to NADC30-like PRRSV and highly pathogenic (HP) PRRSV in the NSP2 and NSP3-9 coding regions, respectively, suggesting that recombination had occurred between viruses belonging to lineages 1 and 8. Piglets infected with YC-2020 exhibited mild clinical signs, but they had severe histopathological lesions in their lungs. These findings reveal novel genetic and pathogenic features of this isolate.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Filogenia , Genoma Viral , China , Variación Genética
20.
Virus Genes ; 59(1): 109-120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36383275

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China. The fundamental biological properties of the NSP4 were predicted, and an analysis and comparison of NSP4 homology at the nucleotide and amino acid levels was conducted using 123 PRRSV-2 strains. The predicted molecular weight of the NSP4 protein was determined to be 21.1 kDa, and it was predicted to be a stable hydrophobic protein that lacks a signal peptide. NSP4 from different strains exhibited a high degree of amino acid (85.8-100%) and nucleotide sequence homology (81.0-100%). Multiple amino acid substitutions were identified in NSP4 among 15 representative PRRSV-2 strains. Phylogenetic analysis showed that the lineage 8 and 1 strains, the most prevalent strains in China, were indifferent clades with a long genetic distance. This analysis will help fully elucidate the parameters of the PRRSV NSP4 epidemic in China to lay a foundation for adequate understanding of the function of NSP4. Genetic information results from the accumulation of conserved and non-conserved sequences. The high conservation of the NSP4 gene determines the most basic life traits and functions of PRRSV. Analyzing the spatial structure of NSP4 protein and studying the genetic evolution of NSP4 not only provide the theoretical basis for how NSP4 participates in the regulation of the innate response of the host but also provide a target for genetic manipulation and a reasonable target molecule and structure for new drug molecules.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Filogenia , Homología de Secuencia de Ácido Nucleico , Aminoácidos , China/epidemiología , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA