Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421315

RESUMEN

Vision is mainly based on two different tasks, object detection and color discrimination, carried out by photoreceptor (PR) cells. The Drosophila compound eye consists of ∼800 ommatidia. Every ommatidium contains eight PR cells, six outer cells (R1-R6) and two inner cells (R7 and R8), by which object detection and color vision are achieved, respectively. Expression of opsin genes in R7 and R8 is highly coordinated through the instructive signal from R7 to R8, and two major ommatidial subtypes are distributed stochastically; pale type expresses Rh3/Rh5 and yellow type expresses Rh4/Rh6 in R7/R8. The homeodomain protein Defective proventriculus (Dve) is expressed in yellow-type R7 and in six outer PRs, and it is involved in Rh3 repression to specify the yellow-type R7. dve mutant eyes exhibited atypical coupling, Rh3/Rh6 and Rh4/Rh5, indicating that Dve activity is required for proper opsin coupling. Surprisingly, Dve activity in R1 is required for the instructive signal, whereas activity in R6 and R7 blocks the signal. Our results indicate that functional coupling of two different neurons is established through signaling pathways from adjacent neurons that are functionally different.


Asunto(s)
Visión de Colores , Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Opsinas/genética , Opsinas/metabolismo , Visión de Colores/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética , Células Fotorreceptoras de Invertebrados/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(33): e2301411120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552755

RESUMEN

The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some Heliconius butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied Heliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of the H. charithonia genome, we discovered that UVRh1 is present on the W chromosome, making it obligately female-specific. By knocking out UVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey of UVRh1 sex-linkage across the genus shows that species with female-specific UVRh1 expression lack UVRh1 gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression of UVRh1, though this does not preclude other mechanisms, like cis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history of Heliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).


Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Femenino , Visión de Colores/genética , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Ojo/metabolismo , Opsinas/genética , Opsinas/metabolismo , Rodopsina/metabolismo
3.
PLoS Genet ; 17(6): e1009613, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161320

RESUMEN

Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins.


Asunto(s)
Visión de Colores/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Regiones Promotoras Genéticas , Rodopsina/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Fotorreceptoras de Invertebrados/clasificación , Células Fotorreceptoras de Invertebrados/citología , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rodopsina/metabolismo , Factores de Transcripción/metabolismo
4.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35348742

RESUMEN

The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.


Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Mariposas Diurnas/genética , Visión de Colores/genética , Femenino , Opsinas/genética , Células Fotorreceptoras , Alas de Animales
5.
Proc Natl Acad Sci U S A ; 117(16): 8948-8957, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32241889

RESUMEN

Stomatopod crustaceans possess some of the most complex animal visual systems, including at least 16 spectrally distinct types of photoreceptive units (e.g., assemblages of photoreceptor cells). Here we fully characterize the set of opsin genes expressed in retinal tissues and determine expression patterns of each in the stomatopod Neogonodactylus oerstedii Using a combination of transcriptome and RACE sequencing, we identified 33 opsin transcripts expressed in each N. oerstedii eye, which are predicted to form 20 long-wavelength-sensitive, 10 middle-wavelength-sensitive, and three UV-sensitive visual pigments. Observed expression patterns of these 33 transcripts were highly unusual in five respects: 1) All long-wavelength and short/middle-wavelength photoreceptive units expressed multiple opsins, while UV photoreceptor cells expressed single opsins; 2) most of the long-wavelength photoreceptive units expressed at least one middle-wavelength-sensitive opsin transcript; 3) the photoreceptors involved in spatial, motion, and polarization vision expressed more transcripts than those involved in color vision; 4) there is a unique opsin transcript that is expressed in all eight of the photoreceptive units devoted to color vision; and 5) expression patterns in the peripheral hemispheres of the eyes suggest visual specializations not previously recognized in stomatopods. Elucidating the expression patterns of all opsin transcripts expressed in the N. oerstedii retina reveals the potential for previously undocumented functional diversity in the already complex stomatopod eye and is a first step toward understanding the functional significance of the unusual abundance of opsins found in many arthropod species' visual systems.


Asunto(s)
Crustáceos/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Opsinas de Bastones/genética , Animales , Visión de Colores/genética , Duplicación de Gen/fisiología , Perfilación de la Expresión Génica , Filogenia , Retina/citología , Retina/metabolismo , Opsinas de Bastones/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(26): 15262-15269, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541022

RESUMEN

Thyroid hormone (TH) signaling plays an important role in the regulation of long-wavelength vision in vertebrates. In the retina, thyroid hormone receptor ß (thrb) is required for expression of long-wavelength-sensitive opsin (lws) in red cone photoreceptors, while in retinal pigment epithelium (RPE), TH regulates expression of a cytochrome P450 enzyme, cyp27c1, that converts vitamin A1 into vitamin A2 to produce a red-shifted chromophore. To better understand how TH controls these processes, we analyzed the phenotype of zebrafish with mutations in the three known TH nuclear receptor transcription factors (thraa, thrab, and thrb). We found that no single TH nuclear receptor is required for TH-mediated induction of cyp27c1 but that deletion of all three (thraa-/-;thrab-/-;thrb-/- ) completely abrogates its induction and the resulting conversion of A1- to A2-based retinoids. In the retina, loss of thrb resulted in an absence of red cones at both larval and adult stages without disruption of the underlying cone mosaic. RNA-sequencing analysis revealed significant down-regulation of only five genes in adult thrb-/- retina, of which three (lws1, lws2, and miR-726) occur in a single syntenic cluster. In the thrb-/- retina, retinal progenitors destined to become red cones were transfated into ultraviolet (UV) cones and horizontal cells. Taken together, our findings demonstrate cooperative regulation of cyp27c1 by TH receptors and a requirement for thrb in red cone fate determination. Thus, TH signaling coordinately regulates both spectral sensitivity and sensory plasticity.


Asunto(s)
Visión de Colores/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Opsinas/metabolismo , Receptores de Hormona Tiroidea/fisiología , Percepción Visual/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Visión de Colores/genética , Sistema Enzimático del Citocromo P-450/genética , Eliminación de Gen , Regulación de la Expresión Génica , Opsinas/genética , Células Fotorreceptoras Retinianas Conos , Rayos Ultravioleta , Pez Cebra , Proteínas de Pez Cebra/genética
7.
PLoS Genet ; 16(6): e1008869, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569302

RESUMEN

We investigate mutations in trß2, a splice variant of thrb, identifying changes in function, structure, and behavior in larval and adult zebrafish retinas. Two N-terminus CRISPR mutants were identified. The first is a 6BP+1 insertion deletion frameshift resulting in a truncated protein. The second is a 3BP in frame deletion with intact binding domains. ERG recordings of isolated cone signals showed that the 6BP+1 mutants did not respond to red wavelengths of light while the 3BP mutants did respond. 6BP+1 mutants lacked optomotor and optokinetic responses to red/black and green/black contrasts. Both larval and adult 6BP+1 mutants exhibit a loss of red-cone contribution to the ERG and an increase in UV-cone contribution. Transgenic reporters show loss of cone trß2 activation in the 6BP+1 mutant but increase in the density of cones with active blue, green, and UV opsin genes. Antibody reactivity for red-cone LWS1 and LWS2 opsin was absent in the 6BP+1 mutant, as was reactivity for arrestin3a. Our results confirm a critical role for trß2 in long-wavelength cone development.


Asunto(s)
Visión de Colores/genética , Regulación del Desarrollo de la Expresión Génica , Genes erbA/genética , Retina/crecimiento & desarrollo , Receptores beta de Hormona Tiroidea/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Opsinas de los Conos/genética , Opsinas de los Conos/metabolismo , Mutación del Sistema de Lectura , Mutación INDEL , Larva , Modelos Animales , Células Fotorreceptoras de Invertebrados/patología , Retina/citología , Retina/patología , Eliminación de Secuencia , Transactivadores/genética , Transactivadores/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445836

RESUMEN

Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.


Asunto(s)
Proteínas del Ojo , Visión Nocturna , Retina , Proteínas de Unión al Retinol , Retina/fisiología , Retina/ultraestructura , Estimulación Luminosa , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/fisiología , Ratones Noqueados , Animales , Ratones , Fusión de Flicker/genética , Fusión de Flicker/fisiología , Visión de Colores/genética , Visión de Colores/fisiología , Agudeza Visual/genética , Agudeza Visual/fisiología , Visión Nocturna/genética , Visión Nocturna/fisiología , Tomografía de Coherencia Óptica , Masculino , Femenino
9.
Exp Eye Res ; 209: 108669, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126082

RESUMEN

M-opsin, encoded by opn1mw gene, is involved in green-light perception of mice. The role of M-opsin in emmetropization of mice remains uncertain. To answer the above question, 4-week-old wild-type (WT) mice were exposed to white light or green light (460-600 nm, a peak at 510 nm) for 12 weeks. Refractive development was estimated biweekly. After treatment, retinal function was assessed using electroretinogram (ERG). Dopamine (DA) in the retina was evaluated by high-performance liquid chromatography, M-opsin and S-opsin protein levels by Western blot and ELISA, and mRNA expressions of opn1mw and opn1sw by RT-PCR. Effects of M-opsin were further verified in Opn1mw-/- and WT mice raised in white light for 4 weeks. Refractive development was examined at 4, 6, and 8 weeks after birth. The retinal structure was estimated through hematoxylin and eosin staining (H&E) and transmission electron microscopy (TEM). Retinal wholemounts from WT and Opn1mw-/- mice were co-immunolabeled with M-opsin and S-opsin, their distribution and quantity were then assayed by immunofluorescence staining (IF). Expression of S-opsin protein and opn1sw mRNA were determined by Western blot, ELISA, or RT-PCR. Retinal function and DA content were analyzed by ERG and liquid chromatography tandem-mass spectrometry (LC-MS/MS), respectively. Lastly, visual cliff test was used to evaluate the depth perception of the Opn1mw-/- mice. We found that green light-treated WT mice were more myopic with increased M-opsin expression and decreased DA content than white light-treated WT mice after 12-week illumination. No electrophysiologic abnormalities were recorded in mice exposed to green light compared to those exposed to white light. A more hyperopic shift was further observed in 8-week-old Opn1mw-/- mice in white light with lower DA level and weakened cone function than the WT mice under white light. Neither obvious structural disruption of the retina nor abnormal depth perception was found in Opn1mw-/- mice. Together, these results suggested that the M-opsin-based color vision participated in the refractive development of mice. Overexposure to green light caused myopia, but less perception of the middle-wavelength components in white light promoted hyperopia in mice. Furthermore, possible dopaminergic signaling pathway was suggested in myopia induced by green light.


Asunto(s)
Visión de Colores/genética , Regulación de la Expresión Génica , Opsinas/genética , Refracción Ocular/genética , Errores de Refracción/genética , Retina/metabolismo , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Opsinas/biosíntesis , ARN/genética , Errores de Refracción/diagnóstico , Errores de Refracción/metabolismo , Retina/ultraestructura , Tomografía Óptica
10.
Mol Biol Evol ; 36(1): 54-68, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476197

RESUMEN

Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.


Asunto(s)
Evolución Biológica , Quirópteros/genética , Visión de Colores/genética , Ecolocación , Opsinas/fisiología , Animales , Cuevas
11.
Mol Vis ; 26: 158-172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180681

RESUMEN

Purpose: To present a detailed, reliable long range-PCR and sequencing (LR-PCR-Seq) procedure to identify human opsin gene sequences for variations in the long wavelength-sensitive (OPN1LW), medium wavelength-sensitive (OPN1MW), short wavelength-sensitive (OPN1SW), and rhodopsin (RHO) genes. Methods: Color vision was assessed for nine subjects using the Farnsworth-Munsell 100 hue test, Ishihara pseudoisochromatic plates, and the Rabin cone-contrast threshold procedure (ColorDX, Konan Medical). The color vision phenotypes were normal trichromacy (n = 3), potential tetrachromacy (n = 3), dichromacy (n = 2), and unexplained low color vision (n = 1). DNA was isolated from blood or saliva and LR-PCR amplified into individual products: OPN1LW (4,045 bp), OPN1MW (4,045 bp), OPN1SW (3,326 bp), and RHO (6,715 bp). Each product was sequenced using specific internal primer sets. Analysis was performed with Mutation Surveyor software. Results: The LR-PCR-Seq technique identified known single nucleotide polymorphisms (SNPs) in OPN1LW and OPN1MW gene codons (180, 230, 233, 277, and 285), as well as those for lesser studied codons (174, 178, 236, 274, 279, 298 and 309) in the OPN1LW and OPN1MW genes. Additionally, six SNP variants in the OPN1MW and OPN1LW genes not previously reported in the NCBI dbSNP database were identified. An unreported poly-T region within intron 5(c.36+126) of the rhodopsin gene was also found, and analysis showed it to be highly conserved in mammalian species. Conclusions: This LR-PCR-Seq procedure (single PCR reaction per gene followed by sequencing) can identify exonic and intronic SNP variants in OPN1LW, OPN1MW, OPN1SW, and rhodopsin genes. There is no need for restriction enzyme digestion or multiple PCR steps that can introduce errors. Future studies will combine the LR-PCR-Seq with perceptual behavior measures, allowing for accurate correlations between opsin genotypes, retinal photopigment phenotypes, and color perception behaviors.


Asunto(s)
Visión de Colores/genética , Opsinas/genética , Reacción en Cadena de la Polimerasa/métodos , Rodopsina/genética , Análisis de Secuencia de ADN/métodos , Adulto , Anciano de 80 o más Años , Exones , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Rodopsina/sangre , Opsinas de Bastones/sangre , Opsinas de Bastones/genética
12.
J Evol Biol ; 33(4): 422-434, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31820840

RESUMEN

Ecological speciation is facilitated when divergent adaptation has direct effects on selective mating. Divergent sensory adaptation could generate such direct effects, by mediating both ecological performance and mate selection. In aquatic environments, light attenuation creates distinct photic environments, generating divergent selection on visual systems. Consequently, divergent sensory drive has been implicated in the diversification of several fish species. Here, we experimentally test whether divergent visual adaptation explains the divergence of mate preferences in Haplochromine cichlids. Blue and red Pundamilia co-occur across south-eastern Lake Victoria. They inhabit different photic conditions and have distinct visual system properties. Previously, we documented that rearing fish under different light conditions influences female preference for blue versus red males. Here, we examine to what extent variation in female mate preference can be explained by variation in visual system properties, testing the causal link between visual perception and preference. We find that our experimental light manipulations influence opsin expression, suggesting a potential role for phenotypic plasticity in optimizing visual performance. However, variation in opsin expression does not explain species differences in female preference. Instead, female preference covaries with allelic variation in the long-wavelength-sensitive opsin gene (LWS), when assessed under broad-spectrum light. Taken together, our study presents evidence for environmental plasticity in opsin expression and confirms the important role of colour perception in shaping female mate preferences in Pundamilia. However, it does not constitute unequivocal evidence for the direct effects of visual adaptation on assortative mating.


Asunto(s)
Cíclidos/genética , Visión de Colores/genética , Especiación Genética , Preferencia en el Apareamiento Animal , Opsinas/genética , Adaptación Biológica , Animales , Percepción de Color , Femenino , Masculino , Opsinas/metabolismo
13.
J Opt Soc Am A Opt Image Sci Vis ; 37(4): A26-A34, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400513

RESUMEN

Here we present evidence implicating disrupted RNA splicing as a potential cause of inherited tritan color vision. Initially we tested 51 subjects for color vision deficiencies. One made significant tritan errors; the others were classified as normal trichromats. The putative tritan subject was the only one of the 51 subjects found to be heterozygous for an OPN1SW gene mutation that disrupts RNA splicing in an in vitro assay. In order to gather further support for the role of the splicing mutation in tritan color vision, the putative tritan subject's mother and sister were examined. They also made tritan errors and had the same OPN1SW gene mutation.


Asunto(s)
Defectos de la Visión Cromática/genética , Haploinsuficiencia , Empalme del ARN/genética , Opsinas de Bastones/genética , Visión de Colores/genética , Defectos de la Visión Cromática/fisiopatología , Células HEK293 , Humanos , Intrones/genética , Mutación
14.
Mol Ecol ; 28(12): 3025-3041, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977927

RESUMEN

Animal visual systems adapt to environmental light on various timescales. In scotopic conditions, evolutionary time-scale adaptations include spectral tuning to a narrower light spectrum, loss (or inactivation) of visual genes, and pure-rod or rod-dominated retinas. Some fishes inhabiting shallow coral reefs may show activity during the day and at night. It is unclear whether these fishes show adaptations typical of exclusively nocturnal or deep-sea fishes, or of diurnally active shallow-water species. Here, we investigated visual pigment diversity in cardinalfishes (Apogonidae). Most cardinalfishes are nocturnal foragers, yet they aggregate in multispecies groups in and around coral heads during the day, engaging in social and predator avoidance behaviours. We sequenced retinal transcriptomes of 28 species found on the Great Barrier Reef, assessed the diversity of expressed opsin genes and predicted the spectral sensitivities of resulting photopigments using sequence information. Predictions were combined with microspectrophotometry (MSP) measurements in seven cardinalfish species. Retinal opsin expression was rod opsin (RH1) dominated (>87%), suggesting the importance of scotopic vision. However, all species retained expression of multiple cone opsins also, presumably for colour vision. We found five distinct quantitative expression patterns among cardinalfishes, ranging from short-wavelength-shifted to long-wavelength-shifted. These results indicate that cardinalfishes are both well adapted to dim-light conditions and have retained a sophisticated colour vision sense. Other reef fish families also show both nocturnal and diurnal activity while most are strictly one or the other. It will be interesting to compare these behavioural differences across different phylogenetic groups using the criteria and methods developed here.


Asunto(s)
Evolución Biológica , Opsinas de los Conos/genética , Perciformes/genética , Opsinas de Bastones/genética , Aclimatación/genética , Animales , Visión de Colores/genética , Visión de Colores/fisiología , Arrecifes de Coral , Expresión Génica/genética , Luz , Perciformes/fisiología , Filogenia
15.
BMC Evol Biol ; 18(1): 22, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29439676

RESUMEN

BACKGROUND: Exaggerated signals, such as brilliant colours, are usually assumed to evolve through antagonistic coevolution between senders and receivers, but the underlying genetic mechanisms are rarely known. Here we explore a recently identified "redness gene", CYP2J19, that is highly interesting in this context since it encodes a carotenoid-modifying enzyme (a C4 ketolase involved in both colour signalling and colour discrimination in the red (long wavelength) spectral region.) RESULTS: A single full-length CYP2J19 was retrieved from 43 species out of 70 avian genomes examined, representing all major avian clades. In addition, CYP2J19 sequences from 13 species of weaverbirds (Ploceidae), seven of which have red C4-ketocarotenoid coloration were analysed. Despite the conserved retinal function and pleiotropy of CYP2J19, analyses indicate that the gene has been positively selected throughout the radiation of birds, including sites within functional domains described in related CYP (cytochrome P450) loci. Analyses of eight further CYP loci across 25 species show that positive selection is common in this gene family in birds. There was no evidence for a change in selection pressure on CYP2J19 following co-option for red coloration in the weaverbirds. CONCLUSIONS: The results presented here are consistent with an ancestral conserved function of CYP2J19 in the pigmentation of red retinal oil droplets used for colour vision, and its subsequent co-option for red integumentary coloration. The cause of positive selection on CYP2J19 is unclear, but may be partly related to compensatory mutations related to selection at the adjacent gene CYP2J40.


Asunto(s)
Aves/genética , Visión de Colores/genética , Secuencia Conservada , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Pleiotropía Genética , Pigmentación/genética , Animales , Sitios Genéticos , Genoma , Especificidad de la Especie
16.
Mol Biol Evol ; 34(9): 2271-2284, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28505307

RESUMEN

Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors.


Asunto(s)
Mariposas Diurnas/genética , Opsinas/genética , Animales , Mariposas Diurnas/metabolismo , Visión de Colores/genética , Evolución Molecular , Duplicación de Gen/genética , Variación Genética , Quinurenina/análogos & derivados , Quinurenina/genética , Quinurenina/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Pigmentación/genética , Retina/metabolismo , Opsinas de Bastones/genética , Análisis de Secuencia de ADN/métodos , Caracteres Sexuales , Alas de Animales
17.
J Exp Biol ; 221(Pt 22)2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30158132

RESUMEN

Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment, according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on genes encoding opsin, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales, including short time frames due to seasonal variation, or through longer-term evolutionary tuning. There is also evidence for 'on-the-fly' adaptations in adult fish in response to rapidly changing environmental conditions; however, results are contradictory. Here, we investigated the ability of three reef fish species that belong to two ecologically distinct families, yellow-striped cardinalfish (Ostorhinchus cyanosoma), Ambon damselfish (Pomacentrus amboinensis) and lemon damselfish (Pomacentrus moluccensis), to alter opsin gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that changes in opsin expression in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.


Asunto(s)
Visión de Colores/fisiología , Proteínas de Peces/genética , Expresión Génica/fisiología , Luz , Opsinas/genética , Perciformes/fisiología , Animales , Visión de Colores/genética , Arrecifes de Coral , Ecosistema , Proteínas de Peces/metabolismo , Opsinas/metabolismo , Perciformes/genética , Especificidad de la Especie , Factores de Tiempo
18.
Mol Biol Evol ; 33(4): 1029-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26739880

RESUMEN

Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination.


Asunto(s)
Visión de Colores/genética , Evolución Molecular , Opsinas/genética , Primates/genética , Animales , Humanos , Zarigüeyas/genética , Zarigüeyas/fisiología , Filogenia , Primates/fisiología , Opsinas de Bastones/genética , Rayos Ultravioleta
19.
Biol Lett ; 13(3)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28275167

RESUMEN

Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys.


Asunto(s)
Visión de Colores/genética , Opsinas/genética , Strepsirhini/genética , Animales , Ecosistema , Genes Ligados a X , Polimorfismo Genético , Análisis de Secuencia de Proteína
20.
PLoS Genet ; 10(12): e1004884, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25522367

RESUMEN

Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.


Asunto(s)
Visión de Colores/genética , Evolución Molecular , Adaptación Biológica/genética , Epistasis Genética , Humanos , Mutagénesis , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA