Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 200(1): 49-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676482

RESUMO

PURPOSE: To assess the effects of a workflow for reproducible patient and breast positioning on implant stability during high-dose-rate multi-catheter breast brachytherapy. METHODS: Thirty patients were treated with our new positioning control workflow. Implant stability was evaluated based on a comparison of planning-CTs to control-CTs acquired halfway through the treatment. To assess geometric stability, button-button distance variations as well as Euclidean dwell position deviations were evaluated. The latter were also quantified within various separated regions within the breast to investigate the location-dependency of implant alterations. Furthermore, dosimetric variations to target volume and organs at risk (ribs, skin) as well as isodose volume changes were analyzed. Results were compared to a previously treated cohort of 100 patients. RESULTS: With the introduced workflow, the patient fraction affected by button-button distance variations > 5 mm and by dwell position deviations > 7 mm were reduced from 37% to 10% and from 30% to 6.6%, respectively. Implant stability improved the most in the lateral to medial breast regions. Only small stability enhancements were observed regarding target volume dosimetry, but the stability of organ at risk exposure became substantially higher. D0.2ccm skin dose variations > 12.4% and D0.1ccm rib dose variations > 6.7% were reduced from 11% to 0% and from 16% to 3.3% of all patients, respectively. CONCLUSION: Breast positioning control improved geometric and dosimetric implant stability for individual patients, and thus enhanced physical plan validity in these cases.


Assuntos
Braquiterapia , Neoplasias da Mama , Humanos , Feminino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia/métodos , Tomografia Computadorizada por Raios X , Catéteres , Neoplasias da Mama/radioterapia
2.
Strahlenther Onkol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967820

RESUMO

PURPOSE: A prototype infrared camera - cone-beam computed tomography (CBCT) system for tracking in brachytherapy has recently been developed. We evaluated for the first time the corresponding tracking accuracy and uncertainties, and implemented a tracking-based prediction of needles on CBCT scans. METHODS: A marker tool rigidly attached to needles was 3D printed. The precision and accuracy of tool tracking was then evaluated for both static and dynamic scenarios. Euclidean distances between the tracked and CBCT-derived markers were assessed as well. To implement needle tracking, ground truth models of the tool attached to 200 mm and 160 mm needles were matched to the tracked positions in order to project the needles into CBCT scans. Deviations between projected and actual needle tips were measured. Finally, we put our results into perspective with simulations of the system's tracking uncertainties. RESULTS: For the stationary scenario and dynamic movements, we achieved tool-tracking precision and accuracy of 0.04 ± 0.06 mm and 0.16 ± 0.18 mm, respectively. The tracked marker positions differed by 0.52 ± 0.18 mm from the positions determined via CBCT. In addition, the predicted needle tips in air deviated from the actual tip positions by only 1.62 ± 0.68 mm (200 mm needle) and 1.49 ± 0.62 mm (160 mm needle). The simulated tracking uncertainties resulted in tip variations of 1.58 ± 0.91 mm and 1.31 ± 0.69 mm for the 200 mm and 160 mm needles, respectively. CONCLUSION: With the innovative system it was possible to achieve a high tracking and prediction accuracy of marker tool and needles. The system shows high potential for applicator tracking in brachytherapy.

3.
Strahlenther Onkol ; 200(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163834

RESUMO

Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Humanos , Radiocirurgia/métodos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Imageamento Tridimensional
4.
J Appl Clin Med Phys ; 25(7): e14364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626753

RESUMO

PURPOSE: To enable a real-time applicator guidance for brachytherapy, we used for the first time infra-red tracking cameras (OptiTrack, USA) integrated into a mobile cone-beam computed tomography (CBCT) scanner (medPhoton, Austria). We provide the first description of this prototype and its performance evaluation. METHODS: We performed assessments of camera calibration and camera-CBCT registration using a geometric calibration phantom. For this purpose, we first evaluated the effects of intrinsic parameters such as camera temperature or gantry rotations on the tracked marker positions. Afterward, calibrations with various settings (sample number, field of view coverage, calibration directions, calibration distances, and lighting conditions) were performed to identify the requirements for achieving maximum tracking accuracy based on an in-house phantom. The corresponding effects on camera-CBCT registration were determined as well by comparing tracked marker positions to the positions determined via CBCT. Long-term stability was assessed by comparing tracking and a ground-truth on a weekly basis for 6 weeks. RESULTS: Robust tracking with positional drifts of 0.02 ± 0.01 mm was feasible using the system after a warm-up period of 90 min. However, gantry rotations affected the tracking and led to inaccuracies of up to 0.70 mm. We identified that 4000 samples and full coverage were required to ensure a robust determination of marker positions and camera-CBCT registration with geometric deviations of 0.18 ± 0.03 mm and 0.42 ± 0.07 mm, respectively. Long-term stability showed deviations of more than two standard deviations from the initial calibration after 3 weeks. CONCLUSION: We implemented for the first time a standalone combined camera-CBCT system for tracking in brachytherapy. The system showed high potential for establishing corresponding workflows.


Assuntos
Braquiterapia , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Braquiterapia/instrumentação , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/instrumentação , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem
5.
Strahlenther Onkol ; 199(1): 22-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788694

RESUMO

PURPOSE: A markerless workflow for the treatment of breast cancer patients has been introduced and evaluated retrospectively. It includes surface-guided radiation therapy (SGRT)-only positioning for patients with small cone beam CT (CBCT) position corrections during the first five fractions. Prerequisites and the frequency of its clinical application were evaluated, as well as potential benefits in terms of treatment time and dose savings, the frequency of CBCT scans, and the accuracy of the positioning. METHODS: A group of 100 patients treated with the new workflow on two Versa HD linacs has been compared to a matched control group of patients treated with the former workflow, which included prepositioning with skin markings and lasers, SGRT and daily CBCT. The comparison was based on the evaluation of logfiles. RESULTS: Of the patients treated with the new workflow, 40% did not receive daily CBCT scans. This resulted in mean time savings of 97 s, 166 s and 239 s per fraction for the new workflow, for patients treated without daily CBCT and for SGRT-only fractions, respectively, when compared to the old workflow. Dose savings amounted to a weighted computed tomography dose index reduction of CTDIW = 2.56 cGy on average for normofractionated treatment and weekly CBCTs, while for patients not treated with daily CBCT, SGRT-based positioning accuracy was 5.2 mm for the mean translational magnitude, as evaluated by CBCT. CONCLUSION: For 40% of the patients, after five fractions with small CBCT corrections, the workflow could be changed to SGRT-only positioning with weekly CBCT. This leads to imaging dose and time savings and thus also reduced intrafraction motion, potentially increased patient throughput and patient comfort, while assuring appropriate positioning accuracy.


Assuntos
Neoplasias da Mama , Radioterapia Guiada por Imagem , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Posicionamento do Paciente/métodos , Fluxo de Trabalho , Estudos Retrospectivos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Strahlenther Onkol ; 199(8): 739-748, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285037

RESUMO

PURPOSE: Auxiliary devices such as immobilization systems should be considered in synthetic CT (sCT)-based treatment planning (TP) for MRI-only brain radiotherapy (RT). A method for auxiliary device definition in the sCT is introduced, and its dosimetric impact on the sCT-based TP is addressed. METHODS: T1-VIBE DIXON was acquired in an RT setup. Ten datasets were retrospectively used for sCT generation. Silicone markers were used to determine the auxiliary devices' relative position. An auxiliary structure template (AST) was created in the TP system and placed manually on the MRI. Various RT mask characteristics were simulated in the sCT and investigated by recalculating the CT-based clinical plan on the sCT. The influence of auxiliary devices was investigated by creating static fields aimed at artificial planning target volumes (PTVs) in the CT and recalculated in the sCT. The dose covering 50% of the PTV (D50) deviation percentage between CT-based/recalculated plan (∆D50[%]) was evaluated. RESULTS: Defining an optimal RT mask yielded a ∆D50[%] of 0.2 ± 1.03% for the PTV and between -1.6 ± 3.4% and 1.1 ± 2.0% for OARs. Evaluating each static field, the largest ∆D50[%] was delivered by AST positioning inaccuracy (max: 3.5 ± 2.4%), followed by the RT table (max: 3.6 ± 1.2%) and the RT mask (max: 3.0 ± 0.8% [anterior], 1.6 ± 0.4% [rest]). No correlation between ∆D50[%] and beam depth was found for the sum of opposing beams, except for (45°â€¯+ 315°). CONCLUSION: This study evaluated the integration of auxiliary devices and their dosimetric influence on sCT-based TP. The AST can be easily integrated into the sCT-based TP. Further, we found that the dosimetric impact was within an acceptable range for an MRI-only workflow.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Humanos , Estudos Retrospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
7.
Strahlenther Onkol ; 199(7): 686-691, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000223

RESUMO

PURPOSE: 4D CT imaging is an integral part of 4D radiotherapy workflows. However, 4D CT data often contain motion artifacts that mitigate treatment planning. Recently, breathing-adapted 4D CT (i4DCT) was introduced into clinical practice, promising artifact reduction in in-silico and phantom studies. Here, we present an image quality comparison study, pooling clinical patient data from two centers: a new i4DCT and a conventional spiral 4D CT patient cohort. METHODS: The i4DCT cohort comprises 129 and the conventional spiral 4D CT cohort 417 4D CT data sets of lung and liver tumor patients. All data were acquired for treatment planning. The study consists of three parts: illustration of image quality in selected patients of the two cohorts with similar breathing patterns; an image quality expert rater study; and automated analysis of the artifact frequency. RESULTS: Image data of the patients with similar breathing patterns underline artifact reduction by i4DCT compared to conventional spiral 4D CT. Based on a subgroup of 50 patients with irregular breathing patterns, the rater study reveals a fraction of almost artifact-free scans of 89% for i4DCT and only 25% for conventional 4D CT; the quantitative analysis indicated a reduction of artifact frequency by 31% for i4DCT. CONCLUSION: The results demonstrate 4D CT image quality improvement for patients with irregular breathing patterns by breathing-adapted 4D CT in this first corresponding clinical data image quality comparison study.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Respiração , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Movimento (Física)
8.
Strahlenther Onkol ; 198(6): 573-581, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278094

RESUMO

BACKGROUND AND PURPOSE: On-site cone-beam computed tomography (CBCT) has gained in importance in adaptive brachytherapy during recent years. Besides treatment planning, there is increased need particularly for image-guidance during interventional procedures and for image-guided treatment quality assurance (QA). For this purpose, an innovative CBCT device was rolled out at our hospital as the first site worldwide. We present the first clinical images and experiences. MATERIALS AND METHODS: The novel CBCT system is constructed of a 121 cm diameter ring gantry, and features a 43.2â€¯× 43.2 cm2 flat-panel detector, wireless remote-control via tablet-PC, and battery-powered maneuverability. Within the first months of clinical operation, we performed CBCT-based treatment QA for a total of 26 patients (8 with breast, 16 with cervix, and 2 with vaginal cancer). CBCT scans were analyzed regarding potential movements of implanted applicators in-situ during the brachytherapy course. RESULTS: With the presented device, treatment QA was feasible for the majority of patients. The CBCT scans of breast patients showed sufficient contrast between implanted catheters and tissue. For gynecologic patients, a distinct visualization of applicators was achieved in general. However, reasonable differentiations of organic soft tissues were not feasible. CONCLUSION: The CBCT system allowed basic treatment QA measures for breast and gynecologic patients. For image-guidance during interventional brachytherapy procedures, the current image quality is not adequate. Substantial performance enhancements are required for intraoperative image-guidance.


Assuntos
Braquiterapia , Braquiterapia/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Imagens de Fantasmas
9.
J Appl Clin Med Phys ; 23(4): e13588, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35297569

RESUMO

The regular evaluation of imaging performance of computed tomography (CT) scanners is essential for CT quality assurance. For automation of this process, the software QAMaster was developed at the Universitätsklinikum Erlangen, which provides based on CT scans of the CatPhan® 504 (The Phantom Laboratory, Salem, USA) automated image quality analysis and documentation by evaluating CT number accuracy, spatial linearity, uniformity, contrast-noise-ratio, spatial resolution, noise, and slice thickness. Dose assessment is supported by calculations of the weighted computed tomography dose index (CTDIw ) and weighted cone beam dose index (CBDIw ). QAMaster was tested with CatPhan® 504 scans and compared to manual evaluations of these scans, whereby high consistency of the respective results was observed. The CT numbers, spatial linearity, uniformity, contrast-noise-ratio, noise, and slice thickness deviated by only (0.13 ± 0.25) HU, (0.02 ± 0.05) mm, (-0.01 ± 0.03)%, 0.8 ± 1.8, (0.131 ± 0.05) HU, and (0.004 ± 0.005) mm between both evaluations, respectively. The QAMaster results for spatial resolution did not differ significantly (p = 0.34) from the CatPhan® 504 based manual resolution assessment. Dose computations were fully consistent between QAMaster and manual calculations. Thus, QAMaster proved to be a comprehensive and functional software for performing an automated CT quality assurance routine. QAMaster will be open-source after its release.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imagens de Fantasmas , Software , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
10.
J Appl Clin Med Phys ; 23(2): e13501, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34905285

RESUMO

PURPOSE: A novel, mobile cone-beam computed tomography (CBCT) system for image-guided adaptive brachytherapy was recently deployed at our hospital as worldwide first site. Prior to the device's clinical operation, a profound characterization of its imaging performance was conducted. This was essential to optimize both the imaging workflow and image quality for achieving the best possible clinical outcomes. We present the results of our investigations. METHODS: The novel CBCT-system features a ring gantry with 121 cm clearance as well as a 43.2 × 43.2 cm2 flat-panel detector, and is controlled via a tablet-personal computer (PC). For evaluating its imaging performance, the geometric reproducibility as well as imaging fidelity, computed tomography (CT)-number accuracy, uniformity, contrast-noise-ratio (CNR), noise characteristics, and spatial resolution as fundamental image quality parameters were assessed. As dose metric the weighted cone-beam dose index (CBDIw ) was measured. Image quality was evaluated using standard quality assurance (QA) as well as anthropomorphic upper torso and breast phantoms. Both in-house and manufacturer protocols for abdomen, pelvis, and breast imaging were examined. RESULTS: Using the in-house protocols, the QA phantom scans showed altogether a high image quality, with high CT-number accuracy (R2  > 0.97) and uniformity (<12 Hounsfield Unit (HU) cupping), reasonable noise and imaging fidelity, and good CNR at bone-tissue transitions of up to 28:1. Spatial resolution was strongly limited by geometric instabilities of the device. The breast phantom scans fulfilled clinical requirements, whereas the abdomen and pelvis scans showed severe artifacts, particularly at air/bone-tissue transitions. CONCLUSION: With the novel CBCT-system, achieving a high image quality appears possible in principle. However, adaptations of the standard protocols, performance enhancements in image reconstruction referring to artifact reductions, as well as the extinction of geometric instabilities are imperative.


Assuntos
Braquiterapia , Tomografia Computadorizada de Feixe Cônico , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Raios X
11.
J Appl Clin Med Phys ; 23(9): e13727, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35848090

RESUMO

PURPOSE: A novel, mobile 3-in-1 X-ray system featuring radiography, fluoroscopy, and cone-beam computed tomography (CBCT) has been launched for brachytherapy recently. Currently, there is no quality assurance (QA) procedure explicitly applicable to this system equipped with innovative technologies such as dynamic jaws and motorized lasers. We developed a dedicated QA procedure and, based on its performance for a duration of 6 months, provide an assessment of the device's stability over time. METHODS: With the developed QA procedure, we assessed the system's planar and CBCT-imaging performance by investigating geometric accuracy, CT-number stability, contrast-noise-ratio, uniformity, spatial resolution, low-contrast detectability, dynamic range, and X-ray exposure using dedicated phantoms. Furthermore, we evaluated geometric stability by using the flexmap-approach and investigated the device's laser- and jaw-positioning accuracy with an in-house test phantom. CBCT- and planar-imaging protocols for pelvis, breast, and abdomen imaging were examined. RESULTS: Planar- and CBCT-imaging performances were widely stable with a geometric accuracy ≤1 mm, CT-number stability of up to 46 HU, and uniformity variations of up to 48 HU over time. For planar imaging, low-contrast detectability and dynamic range exceeded current recommendations. Although geometric stability was considered tolerable, partly substantial positioning inaccuracies of up to more than 120 mm and -13 mm were obtained for lasers and jaws, respectively. X-ray exposure showed small variations of ≤0.56 µGy and ≤0.76 mGy for planar- and CBCT-imaging, respectively. The conductance of the QA procedure allowed a smooth evaluation of the system's overall performance. CONCLUSION: We developed a QA workflow for a novel 3-in-1 X-ray system allowing to assess the device's imaging and hardware performance. The system showed in general a reasonable imaging performance and stability over time, whereas improvements regarding laser and jaw accuracy are strictly required.


Assuntos
Braquiterapia , Tomografia Computadorizada de Feixe Cônico/métodos , Fluoroscopia , Humanos , Imagens de Fantasmas , Raios X
12.
Strahlenther Onkol ; 197(3): 246-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33103231

RESUMO

PURPOSE: To share our experiences in implementing a dedicated magnetic resonance (MR) scanner for radiotherapy (RT) treatment planning using a novel coil setup for brain imaging in treatment position as well as to present developed core protocols with sequences specifically tuned for brain and prostate RT treatment planning. MATERIALS AND METHODS: Our novel setup consists of two large 18-channel flexible coils and a specifically designed wooden mask holder mounted on a flat tabletop overlay, which allows patients to be measured in treatment position with mask immobilization. The signal-to-noise ratio (SNR) of this setup was compared to the vendor-provided flexible coil RT setup and the standard setup for diagnostic radiology. The occurrence of motion artifacts was quantified. To develop magnetic resonance imaging (MRI) protocols, we formulated site- and disease-specific clinical objectives. RESULTS: Our novel setup showed mean SNR of 163 ± 28 anteriorly, 104 ± 23 centrally, and 78 ± 14 posteriorly compared to 84 ± 8 and 102 ± 22 anteriorly, 68 ± 6 and 95 ± 20 centrally, and 56 ± 7 and 119 ± 23 posteriorly for the vendor-provided and diagnostic setup, respectively. All differences were significant (p > 0.05). Image quality of our novel setup was judged suitable for contouring by expert-based assessment. Motion artifacts were found in 8/60 patients in the diagnostic setup, whereas none were found for patients in the RT setup. Site-specific core protocols were designed to minimize distortions while optimizing tissue contrast and 3D resolution according to indication-specific objectives. CONCLUSION: We present a novel setup for high-quality imaging in treatment position that allows use of several immobilization systems enabling MR-only workflows, which could reduce unnecessary dose and registration inaccuracies.


Assuntos
Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/instrumentação , Neuroimagem/métodos , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação
13.
Strahlenther Onkol ; 197(10): 885-894, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33860819

RESUMO

PURPOSE: Radiotherapy represents an effective treatment option in Graves' ophthalmopathy (GO), leading to palliation of clinical symptoms. However, there are only a limited number of trials comparing the effectiveness of low- vs. high-dose radiotherapy. METHODS: We analyzed 127 patients treated with radiotherapy for stage 3/4 GO (NOSPECS classification). Patients were treated with single doses of 2.0 Gy (cumulative dose 20 Gy) until 2007, afterwards a single dose of 0.8 Gy (cumulative dose 4.8 Gy) was applied. With a median follow-up-time of 9.0 years, the treatment efficacy (overall improvement, sense of eye pressure, lid edema, ocular motility, exophthalmos, subjective vision, and diplopia) and adverse effects were analyzed by a standardized survey. RESULTS: Overall, 63.8% described improvement of symptoms after radiotherapy. No significant differences in overall treatment response and improvement of main outcome measures between low- or high-dose radiotherapy treatments are detectable, while low-dose radiotherapy leads significantly more often to retreatment (13.1% vs. 1.7%, p = 0.016). The main independent predictor of treatment response is the presence of lid edema (odds ratio, OR, 3.53; p = 0.006). CONCLUSION: At long-term follow-up, the majority of patients reported palliation of symptoms with limited adverse effects, suggesting clinical effectiveness of radiotherapy for amelioration of GO symptoms independent of low- or high-dose radiotherapy.


Assuntos
Exoftalmia , Oftalmopatia de Graves , Diplopia/radioterapia , Oftalmopatia de Graves/tratamento farmacológico , Oftalmopatia de Graves/radioterapia , Humanos , Estudos Retrospectivos , Resultado do Tratamento
14.
J Appl Clin Med Phys ; 22(10): 152-160, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34543500

RESUMO

PURPOSE: The goal of this study was to investigate how the choice of the region of interest (ROI) affects the registration results of surface imaging for daily positioning of breast cancer patients. METHODS: The AlignRT system (VisionRT, London) and the XVI Cone beam CT (CBCT; Elekta, Stockholm) installed on two Versa HD linacs (Elekta) were used in this study, which included 28 patients (160 fractions). In the clinical workflow, patients were prepositioned with AlignRT and then shifted in 6 degrees of freedom (DOF) according to the CBCT. A new reference capture was taken immediately afterward. Retrospectively, the surface capture resulting from prepositioning was registered to the latest reference capture. By varying the ROI used for registration, the surface-based results were optimized in terms of minimizing the deviation to the clinically applied CBCT shifts. Two sets of ROIs were used: one obtained by applying a variable margin to the breast surface, another by combining ROIs of anatomical structures, including the sternum and contralateral breast. RESULTS: Registration results showed significant differences from one ROI to another. Generally, the results improved with increasing ROI size, especially for rotational DOFs. ROIs, including the axilla or supraclavicular lymph drainage region, did not yield an improved registration result. On the other hand, an ROI comprising the breast surface, sternum, and a belt caudal to the breasts decreased the average magnitude of the translational and rotational deviations by 6.6% and 30.8% (p < 0.01), respectively, compared to the breast surface only results. CONCLUSION: The influence of the ROI choice on surface imaging registration results was analyzed and the surface-based shifts were compared to clinically applied CBCT shifts. An optimal ROI for the treatment of breast cancer patients, consisting of the breast surface, sternum, and a belt, was identified.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
15.
Strahlenther Onkol ; 196(7): 647-656, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32157345

RESUMO

PURPOSE: To investigate the dosimetric influence of daily interfractional (inter) setup errors and intrafractional (intra) target motion on the planning target volume (PTV) and the possibility of an offline adaptive radiotherapy (ART) method to correct larger patient positioning uncertainties in image-guided radiotherapy for prostate cancer (PCa). MATERIALS AND METHODS: A CTV (clinical target volume)-to-PTV margin ranging from 15 mm in LR (left-right) and SI (superior-inferior) and 5-10 mm in AP (anterior-posterior) direction was applied to all patients. The dosimetric influence of this margin was retrospectively calculated by analysing systematic and random components of inter and intra errors of 31 consecutive intermediate- and high-risk localized PCa patients using daily cone beam computed tomography and kV/kV (kilo-Voltage) imaging. For each patient inter variation was assessed by observing the first 4 treatment days, which led to an offline ART-based treatment plan in case of larger variations. RESULTS: Systematic inter uncertainties were larger (1.12 in LR, 2.28 in SI and 1.48 mm in AP) than intra systematic errors (0.44 in LR, 0.69 in SI and 0.80 mm in AP). Same findings for the random error in SI direction with 3.19 (inter) and 2.30 mm (intra), whereas in LR and AP results were alike with 1.89 (inter) and 1.91 mm (intra) and 2.10 (inter) and 2.27 mm (intra), respectively. The calculated margin revealed dimensions of 4-5 mm in LR, 8-9 mm in SI and 6-7 mm in AP direction. Treatment plans which had to be adapted showed smaller variations with 1.12 (LR) and 1.72 mm (SI) for Σ and 4.17 (LR) and 3.75 mm (SI) for σ compared to initial plans with 1.77 and 2.62 mm for Σ and 4.46 and 5.39 mm for σ in LR and SI, respectively. CONCLUSION: The currently clinically used margin of 15 mm in LR and SI and 5-10 mm in AP direction includes inter and intra uncertainties. The results show that offline ART is feasible which becomes a necessity with further reductions in PTV margins.


Assuntos
Adenocarcinoma/radioterapia , Artefatos , Tomografia Computadorizada de Feixe Cônico/métodos , Posicionamento do Paciente , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Fracionamento da Dose de Radiação , Marcadores Fiduciais , Humanos , Masculino , Movimento (Física) , Órgãos em Risco/efeitos da radiação , Antígeno Prostático Específico/sangue , Prostatectomia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Reto/efeitos da radiação , Estudos Retrospectivos , Incerteza
16.
Strahlenther Onkol ; 196(5): 444-456, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32206842

RESUMO

Due to its superior soft tissue contrast, magnetic resonance imaging (MRI) is essential for many radiotherapy treatment indications. This is especially true for treatment planning in intracranial tumors, where MRI has a long-standing history for target delineation in clinical practice. Despite its routine use, care has to be taken when selecting and acquiring MRI studies for the purpose of radiotherapy treatment planning. Requirements on MRI are particularly demanding for intracranial stereotactic radiotherapy, where accurate imaging has a critical role in treatment success. However, MR images acquired for routine radiological assessment are frequently unsuitable for high-precision stereotactic radiotherapy as the requirements for imaging are significantly different for radiotherapy planning and diagnostic radiology. To assure that optimal imaging is used for treatment planning, the radiation oncologist needs proper knowledge of the most important requirements concerning the use of MRI in brain stereotactic radiotherapy. In the present review, we summarize and discuss the most relevant issues when using MR images for target volume delineation in intracranial stereotactic radiotherapy.


Assuntos
Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Alemanha , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
17.
Strahlenther Onkol ; 193(8): 656-665, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28653120

RESUMO

BACKGROUND: Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. MATERIALS AND METHODS: AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. RESULTS AND DISCUSSION: Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). CONCLUSION: On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Linguagens de Programação , Planejamento da Radioterapia Assistida por Computador , Radioterapia Assistida por Computador , Software , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
18.
Int J Hyperthermia ; 33(4): 471-482, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28049386

RESUMO

Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.

19.
J Appl Clin Med Phys ; 18(4): 144-154, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585287

RESUMO

Tumor tracking is an option for intra-fractional motion management in radiotherapy. The VERO gimbal tracking system creates a unique beam geometry and understanding the effect of the gimbal motion in terms of dose distribution is important to assess the dose deviation from the reference conditions. Beam profiles, output factors (OF) and percentage depth doses (PDD) were measured and evaluated to investigate this effect. In order to find regions affected by the pan-tilt motion, synthesized 2D dose distributions were generated. An evaluation of the 2D dose distribution with the reference position was done using dose difference criteria 1%-4%. The OF and point dose at central axis were measured and compared with the reference position. Furthermore, the PDDs were measured using a special monitoring approach to filtering inaccurate points during the acquisition. Beam profiles evaluation showed that the effect of pan-tilt at inline direction was stronger than at the crossline direction. The maximum average deviation of the full width half maximum (FWHM), flatness, symmetry, penumbra left and right were 0.39 ± 0.25 mm, 0.62 ± 0.50%, 0.76 ± 0.59%, 0.22 ± 0.16 mm, and 0.19 ± 0.15 mm respectively. The ÔF and the measured dose average deviation were <0.5%. The mechanical accuracies during the PDD measurements were 0.28 ± 0.09 mm and 0.21 ± 0.09 mm for pan and tilt and pan or tilt position. The PDD average deviations were 0.58 ± 0.26 % and 0.54 ± 0.25 % for pan-or-tilt and pan-and-tilt position respectively. All the results showed that the deviation at pan and tilt position are higher than pan or tilt. The most influences were observed for the penumbra region and the shift of radiation beam path.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Movimentos dos Órgãos , Dosagem Radioterapêutica , Humanos
20.
J Appl Clin Med Phys ; 18(1): 211-222, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28291934

RESUMO

Electromagnetic Tracking (EMT) is a novel technique for error detection and quality assurance (QA) in interstitial high dose rate brachytherapy (HDR-iBT). The purpose of this study is to provide a concept for data acquisition developed as part of a clinical evaluation study on the use of EMT during interstitial treatment of breast cancer patients. The stability, accuracy, and precision of EMT-determined dwell positions were quantified. Dwell position reconstruction based on EMT was investigated on CT table, HDR table and PDR bed to examine the influence on precision and accuracy in a typical clinical workflow. All investigations were performed using a precise PMMA phantom. The track of catheters inserted in that phantom was measured by manually inserting a 5 degree of freedom (DoF) sensor while recording the position of three 6DoF fiducial sensors on the phantom surface to correct motion influences. From the corrected data, dwell positions were reconstructed along the catheter's track. The accuracy of the EMT-determined dwell positions was quantified by the residual distances to reference dwell positions after using a rigid registration. Precision and accuracy were investigated for different phantom-table and sensor-field generator (FG) distances. The measured precision of the EMT-determined dwell positions was ≤ 0.28 mm (95th percentile). Stability tests showed a drift of 0.03 mm in the first 20 min of use. Sudden shaking of the FG or (large) metallic objects close to the FG degrade the precision. The accuracy with respect to the reference dwell positions was on all clinical tables < 1 mm at 200 mm FG distance and 120 mm phantom-table distance. Phantom measurements showed that EMT-determined localization of dwell positions in HDR-iBT is stable, precise, and sufficiently accurate for clinical assessment. The presented method may be viable for clinical applications in HDR-iBT, like implant definition, error detection or quantification of uncertainties. Further clinical investigations are needed.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Fenômenos Eletromagnéticos , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Neoplasias da Mama/patologia , Catéteres , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA