Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(5): 963-74, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581495

RESUMO

Protein folding in the cell relies on the orchestrated action of conserved families of molecular chaperones, the Hsp70 and Hsp90 systems. Hsp70 acts early and Hsp90 late in the folding path, yet the molecular basis of this timing is enigmatic, mainly because the substrate specificity of Hsp90 is poorly understood. Here, we obtained a structural model of Hsp90 in complex with its natural disease-associated substrate, the intrinsically disordered Tau protein. Hsp90 binds to a broad region in Tau that includes the aggregation-prone repeats. Complementarily, a 106-Å-long substrate-binding interface in Hsp90 enables many low-affinity contacts. This allows recognition of scattered hydrophobic residues in late folding intermediates that remain after early burial of the Hsp70 sites. Our model resolves the paradox of how Hsp90 specifically selects for late folding intermediates but also for some intrinsically disordered proteins-through the eyes of Hsp90 they look the same.


Assuntos
Proteínas tau/química , Doença de Alzheimer/tratamento farmacológico , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas tau/metabolismo
2.
J Biol Chem ; 298(4): 101774, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218773

RESUMO

Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase-like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)-binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.


Assuntos
Lectinas Tipo C , Proteínas de Membrana , Proteômica , Proteínas tau , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas tau/genética , Proteínas tau/metabolismo
3.
J Biol Chem ; 295(52): 18213-18225, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33106314

RESUMO

Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.


Assuntos
Cromatografia Líquida/métodos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Proteínas tau/química , Proteínas tau/metabolismo , Sequência de Aminoácidos , Humanos , Fosforilação , Homologia de Sequência
4.
Angew Chem Int Ed Engl ; 60(2): 726-730, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33017094

RESUMO

Cellular condensation of intrinsically disordered proteins (IDPs) through liquid-liquid phase separation (LLPS) allows dynamic compartmentalization and regulation of biological processes. The IDP tau, which promotes the assembly of microtubules and is hyperphosphorylated in Alzheimer's disease, undergoes LLPS in solution and on the surface of microtubules. Little is known, however, about the influence of tau phosphorylation on its ability to nucleate microtubule bundles in conditions of tau LLPS. Herein, we show that unmodified tau as well as tau phosphorylated at disease-associated epitopes condense into liquid-like droplets. Although tubulin partitioned into and reached high concentrations inside all tau droplets, it was unable to grow into microtubules form the inside of droplets formed by tau phosphorylated at the AT180 epitope (T231/S235). In contrast, neither phosphorylation of tau in the repeat domain nor at its tyrosine residues inhibited the assembly of tubulin from tau droplets. Because LLPS of IDPs has been shown to promote different types of cytoskeletal assembly, our study suggests that IDP phosphorylation might be a broadly used mechanism for the modulation of condensate-mediated cytoskeletal assembly.


Assuntos
Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Tubulina (Proteína)/química , Proteínas tau/química , Proteínas tau/genética
5.
J Biol Chem ; 292(29): 12192-12207, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28536263

RESUMO

Subcellular mislocalization of the microtubule-associated protein Tau is a hallmark of Alzheimer disease (AD) and other tauopathies. Six Tau isoforms, differentiated by the presence or absence of a second repeat or of N-terminal inserts, exist in the human CNS, but their physiological and pathological differences have long remained elusive. Here, we investigated the properties and distributions of human and rodent Tau isoforms in primary forebrain rodent neurons. We found that the Tau diffusion barrier (TDB), located within the axon initial segment (AIS), controls retrograde (axon-to-soma) and anterograde (soma-to-axon) traffic of Tau. Tau isoforms without the N-terminal inserts were sorted efficiently into the axon. However, the longest isoform (2N4R-Tau) was partially retained in cell bodies and dendrites, where it accelerated spine and dendrite growth. The TDB (located within the AIS) was impaired when AIS components (ankyrin G, EB1) were knocked down or when glycogen synthase kinase-3ß (GSK3ß; an AD-associated kinase tethered to the AIS) was overexpressed. Using superresolution nanoscopy and live-cell imaging, we observed that microtubules within the AIS appeared highly dynamic, a feature essential for the TDB. Pathomechanistically, amyloid-ß insult caused cofilin activation and F-actin remodeling and decreased microtubule dynamics in the AIS. Concomitantly with these amyloid-ß-induced disruptions, the AIS/TDB sorting function failed, causing AD-like Tau missorting. In summary, we provide evidence that the human and rodent Tau isoforms differ in axodendritic sorting and amyloid-ß-induced missorting and that the axodendritic distribution of Tau depends on AIS integrity.


Assuntos
Segmento Inicial do Axônio/metabolismo , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Segmento Inicial do Axônio/patologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Dendritos/patologia , Difusão , Embrião de Mamíferos/citologia , Deleção de Genes , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/patologia , Mutagênese Insercional , Neurônios/citologia , Neurônios/patologia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Interferência de RNA , Ratos Wistar , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Proteínas tau/antagonistas & inibidores , Proteínas tau/química , Proteínas tau/genética
6.
Proc Natl Acad Sci U S A ; 112(24): 7501-6, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034266

RESUMO

The structure, dynamic behavior, and spatial organization of microtubules are regulated by microtubule-associated proteins. An important microtubule-associated protein is the protein Tau, because its microtubule interaction is impaired in the course of Alzheimer's disease and several other neurodegenerative diseases. Here, we show that Tau binds to microtubules by using small groups of evolutionary conserved residues. The binding sites are formed by residues that are essential for the pathological aggregation of Tau, suggesting competition between physiological interaction and pathogenic misfolding. Tau residues in between the microtubule-binding sites remain flexible when Tau is bound to microtubules in agreement with a highly dynamic nature of the Tau-microtubule interaction. By binding at the interface between tubulin heterodimers, Tau uses a conserved mechanism of microtubule polymerization and, thus, regulation of axonal stability and cell morphology.


Assuntos
Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Fenômenos Biofísicos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Suínos , Vimblastina/metabolismo , Proteínas tau/química , Proteínas tau/genética
7.
Angew Chem Int Ed Engl ; 57(12): 3246-3250, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314492

RESUMO

The microtubule-associated protein Tau promotes the polymerization of tubulin and modulates the function of microtubules. As a consequence of the dynamic nature of the Tau-tubulin interaction, the structural basis of this complex has remained largely elusive. By using NMR methods optimized for ligand-receptor interactions in combination with site-directed mutagenesis we demonstrate that the flanking domain downstream of the four microtubule-binding repeats of Tau binds competitively to a site on the α-tubulin surface. The binding process is complex, involves partial coupling of different interacting regions, and is modulated by phosphorylation at Y394 and S396. This study strengthens the hypothesis of an intimate relationship between Tau phosphorylation and tubulin binding and highlights the power of the INPHARMA NMR method to characterize the interaction of peptides derived from intrinsically disordered proteins with their molecular partners.


Assuntos
Tubulina (Proteína)/química , Proteínas tau/química , Sítios de Ligação , Microtúbulos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
8.
J Am Chem Soc ; 139(7): 2639-2646, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124562

RESUMO

Fibrillar aggregates of Aß and Tau in the brain are the major hallmarks of Alzheimer's disease. Most Tau fibers have a twisted appearance, but the twist can be variable and even absent. This ambiguity, which has also been associated with different phenotypes of tauopathies, has led to controversial assumptions about fibril constitution, and it is unclear to-date what the molecular causes of this polymorphism are. To tackle this question, we used solid-state NMR strategies providing assignments of non-seeded three-repeat-domain Tau3RD with an inherent heterogeneity. This is in contrast to the general approach to characterize the most homogeneous preparations by construct truncation or intricate seeding protocols. Here, carbon and nitrogen chemical-shift conservation between fibrils revealed invariable secondary-structure properties, however, with inter-monomer interactions variable among samples. Residues with variable amide shifts are localized mostly to N- and C-terminal regions within the rigid beta structure in the repeat region of Tau3RD. By contrast, the hexapeptide motif in repeat R3, a crucial motif for fibril formation, shows strikingly low variability of all NMR parameters: Starting as a nucleation site for monomer-monomer contacts, this six-residue sequence element also turns into a well-defined structural element upon fibril formation. Given the absence of external causes in vitro, the interplay of structurally differently conserved elements in this protein likely reflects an intrinsic property of Tau fibrils.


Assuntos
Adesivos/química , Proteínas de Membrana/química , Proteínas tau/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/genética , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas tau/química
9.
EMBO J ; 32(22): 2920-37, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24065130

RESUMO

Mislocalization and aggregation of Aß and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aß oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aß insult occurs after Aß oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aß toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aß-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach.


Assuntos
Adenosina Trifosfatases/fisiologia , Peptídeos beta-Amiloides/fisiologia , Microtúbulos/fisiologia , Peptídeo Sintases/fisiologia , Sinapses/patologia , Proteínas tau/fisiologia , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Ratos , Espastina , Proteínas tau/genética
10.
Anal Chem ; 88(7): 3704-14, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26877193

RESUMO

Tauopathies, including Alzheimer's disease (AD), are associated with the aggregation of modified microtubule associated protein tau. This pathological state of tau is often referred to as "hyperphosphorylated". Due to limitations in technology, an accurate quantitative description of this state is lacking. Here, a mass spectrometry-based assay, FLEXITau, is presented to measure phosphorylation stoichiometry and provide an unbiased quantitative view of the tau post-translational modification (PTM) landscape. The power of this assay is demonstrated by measuring the state of hyperphosphorylation from tau in a cellular model for AD pathology, mapping, and calculating site occupancies for over 20 phosphorylations. We further employ FLEXITau to define the tau PTM landscape present in AD post-mortem brain. As shown in this study, the application of this assay provides mechanistic understanding of tau pathology that could lead to novel therapeutics, and we envision its further use in prognostic and diagnostic approaches for tauopathies.


Assuntos
Fosfoproteínas/análise , Proteínas tau/análise , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Espectrometria de Massas , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Células Sf9 , Spodoptera , Proteínas tau/metabolismo
11.
J Biol Chem ; 289(29): 20318-32, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24825901

RESUMO

Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its "repeat domain" (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of ß-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function.


Assuntos
Neurônios/metabolismo , Neurônios/patologia , Proteínas tau/química , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Animais , Células , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Humanos , Camundongos , Microscopia de Força Atômica , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas tau/genética
12.
J Biol Chem ; 289(49): 34389-407, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25339173

RESUMO

Abnormal phosphorylation ("hyperphosphorylation") and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 µm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Multimerização Proteica/genética , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Anticorpos Fosfo-Específicos/química , Baculoviridae/genética , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Expressão Gênica , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Mapeamento de Peptídeos , Fosforilação , Cultura Primária de Células , Agregados Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Células Sf9 , Spodoptera , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas tau/farmacologia
13.
EMBO J ; 30(23): 4825-37, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22009197

RESUMO

Missorting of Tau from axons to the somatodendritic compartment of neurons is a hallmark of Alzheimer's disease, but the mechanisms underlying normal sorting and pathological failure are poorly understood. Here, we used several Tau constructs labelled with photoconvertible Dendra2 to analyse its mobility in polarized neurons. This revealed a novel mechanism of sorting-a retrograde barrier in the axon initial segment (AIS) operating as cellular rectifier. It allows anterograde flow of axonal Tau but prevents retrograde flow back into soma and dendrites. The barrier requires binding of Tau to microtubules but does not require F-actin and thus is distinct from the sorting of membrane-associated proteins at the AIS. The barrier breaks down when Tau is phosphorylated in its repeat domain and detached from microtubules, for example, by the kinase MARK/Par1. These observations link the pathological hallmarks of Tau missorting and hyperphosphorylation in neurodegenerative diseases.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia , Proteínas tau/metabolismo , Actinas/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Axônios/ultraestrutura , Polaridade Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Vetores Genéticos/genética , Humanos , Proteínas Luminescentes/análise , Proteínas de Membrana/metabolismo , Microtúbulos/ultraestrutura , Fosforilação , Fotoquímica/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Angew Chem Int Ed Engl ; 54(35): 10347-51, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26094605

RESUMO

Microtubules are regulated by microtubule-associated proteins. However, little is known about the structure of microtubule-associated proteins in complex with microtubules. Herein we show that the microtubule-associated protein Tau, which is intrinsically disordered in solution, locally folds into a stable structure upon binding to microtubules. While Tau is highly flexible in solution and adopts a ß-sheet structure in amyloid fibrils, in complex with microtubules the conserved hexapeptides at the beginning of the Tau repeats two and three convert into a hairpin conformation. Thus, binding to microtubules stabilizes a unique conformation in Tau.


Assuntos
Amiloide/química , Microtúbulos/química , Dobramento de Proteína , Proteínas tau/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica
15.
Hum Mol Genet ; 21(16): 3587-603, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611162

RESUMO

Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents ß-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios/patologia , Tauopatias/etiologia , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Barreira Hematoencefálica/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Hidrazinas/farmacologia , Azul de Metileno/farmacologia , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fenótipo , Fosforilação , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/metabolismo , Tauopatias/patologia , Tiazóis/farmacologia , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética
16.
Hum Mol Genet ; 21(15): 3500-12, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22556362

RESUMO

Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.


Assuntos
Doença de Alzheimer/genética , Demência Frontotemporal/genética , Variação Genética , Proteínas tau/genética , Idoso , Doença de Alzheimer/epidemiologia , Demência Frontotemporal/epidemiologia , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Pessoa de Meia-Idade , Risco
17.
FASEB J ; 27(4): 1450-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23271055

RESUMO

Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants can differentially regulate tau triage. Thus, efforts to promote Hsp72 expression and inhibit Hsc70 could be therapeutically relevant for tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP72/genética , Humanos , Camundongos , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas tau/genética
18.
Nat Med ; 30(6): 1771-1783, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890531

RESUMO

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Proteínas de Ligação a DNA , Vesículas Extracelulares , Demência Frontotemporal , Proteínas tau , Humanos , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Proteínas tau/sangue , Proteínas tau/metabolismo , Vesículas Extracelulares/metabolismo , Demência Frontotemporal/sangue , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Biomarcadores/sangue , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Paralisia Supranuclear Progressiva/sangue , Paralisia Supranuclear Progressiva/diagnóstico , Isoformas de Proteínas/sangue
19.
Biochemistry ; 52(50): 9068-79, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24251416

RESUMO

Tau protein plays an important role in neuronal physiology and Alzheimer's neurodegeneration. Its abilities to aggregate abnormally, to bind to microtubules (MTs), and to promote MT assembly are all influenced by phosphorylation. Phosphorylation of serine residues in the KXGS motifs of Tau's repeat domain, crucial for MT interactions and aggregation, is facilitated most efficiently by microtubule-associated protein/microtubule affinity-regulating kinases (MARKs). Here we applied high-resolution nuclear magnetic resonance analysis to study the kinetics of phosphorylation of Tau by MARK2 and its impact on the structure and microtubule binding of Tau. We demonstrate that MARK2 binds to the N-terminal tail of Tau and selectively phosphorylates three major and five minor serine residues in the repeat domain and C-terminal tail. Structural changes induced by phosphorylation of Tau by MARK2 are highly localized in the proximity of the phosphorylation site and do not affect the global conformation, in contrast to phosphorylation in the proline-rich region. Furthermore, single-residue analysis of binding of Tau to MTs provides support for a model in which Tau's hot spots of MT interaction bind independently of each other and are differentially affected by phosphorylation.


Assuntos
Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas tau/metabolismo , Humanos , Microtúbulos/química , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas tau/química
20.
J Am Chem Soc ; 135(7): 2853-62, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23360400

RESUMO

Antiaggregation drugs play an important role in therapeutic approaches for Alzheimer's disease. Although a large number of small molecules that inhibit the aggregation of the tau protein have been identified, little is known about their mode of action. Here, we reveal the mechanism and the nature of tau species that are generated by interaction of tau with the organic compound pthalocyanine tetrasulfonate (PcTS). We demonstrate that PcTS interferes with tau filament formation by targeting the protein into soluble oligomers. A combination of NMR spectroscopy, electron paramagnetic resonance, and small-angle X-ray scattering reveals that the soluble tau oligomers contain a dynamic, noncooperatively stabilized core with a diameter of 30-40 nm that is distinct from the core of tau filaments. Our results suggest that specific modulation of the conformation of tau is a viable strategy for reduction of pathogenic tau deposits.


Assuntos
Indóis/química , Proteínas tau/antagonistas & inibidores , Proteínas tau/química , Eletroforese em Gel de Poliacrilamida , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA