Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(7): e1008290, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31329581

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1002900.].

2.
Am J Transplant ; 21(9): 2950-2963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33428803

RESUMO

Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Fator 7 de Crescimento de Fibroblastos , Sobrevivência de Enxerto , Camundongos
3.
Reproduction ; 159(4): X1, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32065737

RESUMO

The journal and the authors apologise for an error in the above titled article published in this journal (vol 144, pp 433­445). The authors inadvertently presented duplicate sperm images for XY and XESxrbO mouse testes of Fig. 6 (bottom panels). This error does not change the findings of the paper, as this figure does not give a quantitative breakdown of the proportions of different shapes.

4.
J Immunol ; 201(8): 2510-2519, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158126

RESUMO

Chemokines have been shown to be essential players in a range of cancer contexts. In this study, we demonstrate that mice deficient in the atypical chemokine receptor Ackr2 display impaired development of metastasis in vivo in both cell line and spontaneous models. Further analysis reveals that this relates to increased expression of the chemokine receptor CCR2, specifically by KLRG1+ NK cells from the Ackr2-/- mice. This leads to increased recruitment of KLRG1+ NK cells to CCL2-expressing tumors and enhanced tumor killing. Together, these data indicate that Ackr2 limits the expression of CCR2 on NK cells and restricts their tumoricidal activity. Our data have important implications for our understanding of the roles for chemokines in the metastatic process and highlight Ackr2 and CCR2 as potentially manipulable therapeutic targets in metastasis.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Receptores de Quimiocinas/metabolismo , Animais , Carcinoma Pulmonar de Lewis , Movimento Celular , Quimiocina CCL2/metabolismo , Citotoxicidade Imunológica , Lectinas Tipo C , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Receptores CCR2/metabolismo , Receptores de Quimiocinas/genética , Receptores Imunológicos/metabolismo
5.
Hum Mol Genet ; 25(24): 5300-5310, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742779

RESUMO

During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as 'executioners' for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism.


Assuntos
Proteínas de Ligação a DNA/genética , Espermatócitos/metabolismo , Fatores de Transcrição/genética , Inativação do Cromossomo X/genética , Animais , Masculino , Meiose/genética , Camundongos , Espermatócitos/crescimento & desenvolvimento , Espermatogênese/genética , Cromossomo X/genética
6.
Chromosoma ; 125(2): 177-88, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26596988

RESUMO

In a male mouse, meiosis markers of processed DNA double strand breaks (DSBs) such as DMC1 and RAD51 are regularly seen in the non-PAR region of the X chromosome; these disappear late in prophase prior to entry into the first meiotic metaphase. Marker evidence for DSBs occurring in the non-PAR region of the Y chromosome is limited. Nevertheless, historically it has been documented that recombination can occur within the mouse Y short arm (Yp) when an additional Yp segment is attached distal to the X and/or the Y pseudoautosomal region (PAR). A number of recombinants identified among offsprings involved unequal exchanges involving repeated DNA segments; however, equal exchanges will have frequently been missed because of the paucity of markers to differentiate between the two Yp segments. Here, we discuss this historical data and present extensive additional data obtained for two mouse models with Yp additions to the X PAR. PCR genotyping enabled identification of a wider range of potential recombinants; the proportions of Yp exchanges identified among the recombinants were 9.7 and 22.4 %. The frequency of these exchanges suggests that the Yp segment attached to the X PAR is subject to the elevated level of recombinational DSBs that characterizes the PAR.


Assuntos
Camundongos/genética , Regiões Pseudoautossômicas/genética , Recombinação Genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Animais não Endogâmicos , Feminino , Masculino , Meiose
8.
Development ; 141(4): 855-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496622

RESUMO

Outbred XY(Sry-) female mice that lack Sry due to the 11 kb deletion Sry(dl1Rlb) have very limited fertility. However, five lines of outbred XY(d) females with Y chromosome deletions Y(Del(Y)1Ct)-Y(Del(Y)5Ct) that deplete the Rbmy gene cluster and repress Sry transcription were found to be of good fertility. Here we tested our expectation that the difference in fertility between XO, XY(d-1) and XY(Sry-) females would be reflected in different degrees of oocyte depletion, but this was not the case. Transgenic addition of Yp genes to XO females implicated Zfy2 as being responsible for the deleterious Y chromosomal effect on fertility. Zfy2 transcript levels were reduced in ovaries of XY(d-1) compared with XY(Sry-) females in keeping with their differing fertility. In seeking the biological basis of the impaired fertility we found that XY(Sry-), XY(d-1) and XO,Zfy2 females produce equivalent numbers of 2-cell embryos. However, in XY(Sry-) and XO,Zfy2 females the majority of embryos arrested with 2-4 cells and almost no blastocysts were produced; by contrast, XY(d-1) females produced substantially more blastocysts but fewer than XO controls. As previously documented for C57BL/6 inbred XY females, outbred XY(Sry-) and XO,Zfy2 females showed frequent failure of the second meiotic division, although this did not prevent the first cleavage. Oocyte transcriptome analysis revealed major transcriptional changes resulting from the Zfy2 transgene addition. We conclude that Zfy2-induced transcriptional changes in oocytes are sufficient to explain the more severe fertility impairment of XY as compared with XO females.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Infertilidade Feminina/genética , Meiose/genética , Oócitos/metabolismo , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Proteína da Região Y Determinante do Sexo/deficiência , Fatores de Transcrição/metabolismo , Cromossomo Y/genética , Animais , Western Blotting , Cruzamento , Fase de Clivagem do Zigoto/patologia , Fase de Clivagem do Zigoto/fisiologia , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genótipo , Modelos Lineares , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Fatores de Transcrição/genética
9.
Cytotherapy ; 19(9): 1113-1124, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28673774

RESUMO

BACKGROUND AIMS: Autologous macrophage therapy represents a potentially significant therapeutic advance for the treatment of severe progressive liver cirrhosis. Administration of macrophages has been shown to reduce inflammation and drive fibrotic scar breakdown and tissue repair in relevant models. This therapeutic approach is being assessed for safety and feasibility in a first-in-human trial (MAcrophages Therapy for liver CirrHosis [MATCH] trial). METHODS: We outline the development and validation phases of GMP production. This includes use of the CliniMACS Prodigy cell sorting system to isolate CD14+ cells; optimizing macrophage culture conditions, assessing cellular identity, product purity, functional capability and determining the stability of the final cell product. RESULTS: The GMP-compliant macrophage products have a high level of purity and viability, and have a consistent phenotypic profile, expressing high levels of mature macrophage markers 25F9 and CD206 and low levels of CCR2. The macrophages demonstrate effective phagocytic capacity, are constitutively oriented to an anti-inflammatory profile and remain responsive to cytokine and TLR stimulation. The process validation shows that the cell product in excipient is remarkably robust, consistently passing the viability and phenotypic release criteria up to 48 hours after harvest. CONCLUSIONS: This is the first report of validation of a large-scale, fully Good Manufacturing Practice-compliant, autologous macrophage cell therapy product for the potential treatment of cirrhosis. Phenotypic and functional assays confirm that these cells remain functionally viable for up to 48 h, allowing significant flexibility in administration to patients.


Assuntos
Técnicas de Cultura de Células/métodos , Cirrose Hepática/terapia , Macrófagos/citologia , Fagocitose/fisiologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células/normas , Separação Celular/métodos , Separação Celular/normas , Transplante de Células/métodos , Citocinas/farmacologia , Feminino , Humanos , Lectinas Tipo C/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Monócitos/citologia , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo
10.
PLoS Genet ; 10(6): e1004444, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967676

RESUMO

Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.


Assuntos
Proteínas de Ligação a DNA/genética , Interfase/genética , Meiose/genética , Espermatogênese/genética , Fatores de Transcrição/genética , Animais , Apoptose/fisiologia , Proteínas de Ligação a DNA/biossíntese , Feminino , Genes Ligados ao Cromossomo Y , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Espermatócitos/fisiologia , Fatores de Transcrição/biossíntese , Ativação Transcricional/genética , Cromossomo Y/genética
11.
Cytotherapy ; 17(11): 1604-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342993

RESUMO

BACKGROUND AIMS: Macrophages have complex roles in the liver. The aim of this study was to compare profiles of human monocyte-derived macrophages between controls and cirrhotic patients, to determine whether chronic inflammation affects precursor number or the phenotype, with the eventual aim to develop a cell therapy for cirrhosis. METHODS: Infusion of human macrophages in a murine liver fibrosis model demonstrated a decrease in markers of liver injury (alanine transaminase, bilirubin, aspartate transaminase) and fibrosis (transforming growth factor-ß, α-smooth muscle actin, phosphatidylserine receptor) and an increase in markers of liver regeneration (matrix metalloproteinases [MMP]-9, MMP-12 and TNF-related weak inducer of apoptosis). CD14+ monocytes were then isolated from controls. Monocytes were matured into macrophages for 7 days using a Good Manufacturing Practice-compatible technique. RESULTS: There was no significant difference between the mean number of CD14+ monocytes isolated from cirrhotic patients (n = 9) and controls (n = 10); 2.8 ± SEM 0.54 × 10(8) and 2.5 ± 0.56 × 10(8), respectively. The mean yield of mature macrophages cultured was also not significantly different between cirrhotic patients and controls (0.9 × 10(8) ± 0.38 × 10(8), with more than 90% viability and 0.65 × 10(8) ± 0.16 × 10(8), respectively. Maturation to macrophages resulted in up-regulation of a number of genes (MMP-9, CCL2, interleukin [IL]-10 and TNF-related weak inducer of apoptosis). A cytokine and chemokine polymerase chain reaction array, comparing the control and cirrhotic macrophages, revealed no statistically significant differences. CONCLUSIONS: Macrophages can be differentiated from cirrhotic patients' apheresis-derived CD14 monocytes and develop the same pro-resolution phenotype as control macrophages, indicating their suitability for clinical therapy.


Assuntos
Cirrose Hepática/patologia , Macrófagos/fisiologia , Idoso , Animais , Estudos de Casos e Controles , Diferenciação Celular/imunologia , Diferenciação Celular/fisiologia , Células Cultivadas , Quimiocinas/genética , Estudos de Coortes , Citocinas/genética , Modelos Animais de Doenças , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Regeneração Hepática , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/patologia
12.
Nat Rev Genet ; 10(3): 207-16, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19188923

RESUMO

During mammalian meiosis, synapsis of paternal and maternal chromosomes and the generation of DNA breaks are needed to allow reshuffling of parental genes. In mammals errors in synapsis are associated with a male-biased meiotic impairment, which has been attributed to a response to persisting DNA double-stranded breaks in the asynapsed chromosome segments. Recently it was discovered that the chromatin of asynapsed chromosome segments is transcriptionally silenced, providing new insights into the connection between asynapsis and meiotic impairment.


Assuntos
Pareamento Cromossômico , Cromossomos/metabolismo , Meiose , Animais , Feminino , Humanos , Masculino
13.
PLoS Genet ; 8(9): e1002900, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028340

RESUMO

Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Proteínas/genética , Cromossomo X/genética , Cromossomo Y/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transporte Vesicular , Animais , Epigênese Genética , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Especiação Genética , Infertilidade Masculina , Masculino , Meiose/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Proteínas/antagonistas & inibidores , Cromatina Sexual/genética , Cromatina Sexual/metabolismo , Razão de Masculinidade , Espermátides/metabolismo , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo
14.
Emerg Infect Dis ; 20(12): 1969-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25418327

RESUMO

Variably protease-sensitive prionopathy (VPSPr) can occur in persons of all codon 129 genotypes in the human prion protein gene (PRNP) and is characterized by a unique biochemical profile when compared with other human prion diseases. We investigated transmission properties of VPSPr by inoculating transgenic mice expressing human PRNP with brain tissue from 2 persons with the valine-homozygous (VV) and 1 with the heterozygous methionine/valine codon 129 genotype. No clinical signs or vacuolar pathology were observed in any inoculated mice. Small deposits of prion protein accumulated in the brains of inoculated mice after challenge with brain material from VV VPSPr patients. Some of these deposits resembled microplaques that occur in the brains of VPSPr patients. Comparison of these transmission properties with those of sporadic Creutzfeldt-Jakob disease in the same lines of mice indicated that VPSPr has distinct biological properties. Moreover, we established that VPSPr has limited potential for human-to-human transmission.


Assuntos
Variação Genética , Doenças Priônicas/genética , Doenças Priônicas/transmissão , Príons/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Genótipo , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo
15.
Hum Mol Genet ; 21(12): 2631-45, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407129

RESUMO

Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12-13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Processamento Alternativo , Animais , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/citologia , Testículo/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
16.
Nat Genet ; 37(1): 41-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580272

RESUMO

In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.


Assuntos
Pareamento Cromossômico , Inativação Gênica , Meiose , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Feminino , Genes BRCA1/fisiologia , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espermatócitos/fisiologia , Translocação Genética , Cromossomo X , Cromossomo Y
17.
Nat Genet ; 37(6): 625-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908950

RESUMO

Imprinted genes show differential expression between maternal and paternal alleles as a consequence of epigenetic modification that can result in 'parent-of-origin' effects on phenotypic traits. There is increasing evidence from mouse and human studies that imprinted genes may influence behavior and cognitive functioning. Previous work in girls with Turner syndrome (45,XO) has suggested that there are X-linked parent-of-origin effects on brain development and cognitive functioning, although the interpretation of these data in terms of imprinted gene effects has been questioned. We used a 39,XO mouse model to examine the influence of the parental origin of the X chromosome on cognitive behaviors and expression of X-linked genes in brain. Our findings confirm the existence of X-linked imprinted effects on cognitive processes and identify a new maternally expressed imprinted gene candidate on the X chromosome, Xlr3b, which may be of importance in mediating the behavioral effects.


Assuntos
Cognição , Impressão Genômica , Proteínas Nucleares/genética , Cromossomo X , Animais , Feminino , Masculino , Camundongos
18.
J R Soc Interface ; 21(212): 20230572, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442860

RESUMO

The manufacturing of clinical cellular therapies is a complex process frequently requiring manipulation of cells, exchange of buffers and volume reduction. Current manufacturing processes rely on either low throughput open centrifugation-based devices, or expensive closed-process alternatives. Inertial focusing (IF) microfluidic devices offer the potential for high-throughput, inexpensive equipment which can be integrated into a closed system, but to date no IF devices have been approved for use in cell therapy manufacturing, and there is limited evidence for the effects that IF processing has on human cells. The IF device described in this study was designed to simultaneously separate leucocytes, perform buffer exchange and provide a volume reduction to the cell suspension, using high flow rates with high Reynolds numbers. The performance and effects of the IF device were characterized using peripheral blood mononuclear cells and isolated monocytes. Post-processing cell effects were investigated using multi-parameter flow cytometry to track cell viability, functional changes and fate. The IF device was highly efficient at separating CD14+ monocytes (approx. 97% to one outlet, approx. 60% buffer exchange, 15 ml min-1) and leucocyte processing was well tolerated with no significant differences in downstream viability, immunophenotype or metabolic activity when compared with leucocytes processed with conventional processing techniques. This detailed approach provides robust evidence that IF devices could offer significant benefits to clinical cell therapy manufacture.


Assuntos
Leucócitos Mononucleares , Microfluídica , Humanos , Leucócitos , Sobrevivência Celular , Dispositivos Lab-On-A-Chip
19.
Reproduction ; 144(4): 433-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22869781

RESUMO

We recently used three XO male mouse models with varying Y short-arm (Yp) gene complements, analysed at 30 days post partum, to demonstrate a Yp gene requirement for the apoptotic elimination of spermatocytes with a univalent X chromosome at the first meiotic metaphase. The three mouse models were i) XSxr(a)O in which the Yp-derived Tp(Y)1Ct(Sxr-a) sex reversal factor provides an almost complete Yp gene complement, ii) XSxr(b)O,Eif2s3y males in which Tp(Y)1Ct(Sxr-b) has a deletion completely or partially removing eight Yp genes - the Yp gene Eif2s3y has been added as a transgene to support spermatogonial proliferation, and iii) XOSry,Eif2s3y males in which the Sry transgene directs gonad development along the male pathway. In this study, we have used the same mouse models analysed at 6 weeks of age to investigate potential Yp gene involvement in spermiogenesis. We found that all three mouse models produce haploid and diploid spermatids and that the diploid spermatids showed frequent duplication of the developing acrosomal cap during the early stages. However, only in XSxr(a)O males did spermiogenesis continue to completion. Most strikingly, in XOSry,Eif2s3y males, spermatid development arrested at round spermatid step 7 so that no sperm head restructuring or tail development was observed. In contrast, in XSxr(b)O,Eif2s3y males, spermatids with substantial sperm head and tail morphogenesis could be easily found, although this was delayed compared with XSxr(a)O. We conclude that Sxr(a) (and therefore Yp) includes genetic information essential for sperm morphogenesis and that this is partially retained in Sxr(b).


Assuntos
Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Genes Ligados ao Cromossomo Y , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Espermátides/metabolismo , Espermatogênese , Acrossomo/metabolismo , Acrossomo/patologia , Animais , Deleção Cromossômica , Cromossomos Humanos Y/metabolismo , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Deleção de Genes , Infertilidade Masculina , Masculino , Meiose , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/metabolismo , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/patologia , Proteína da Região Y Determinante do Sexo/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermátides/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS Biol ; 7(11): e1000244, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19918361

RESUMO

Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification.


Assuntos
Dosagem de Genes , Células Germinativas/citologia , Meiose , Cromossomo Y , Animais , Cromossomos de Mamíferos , Regulação da Expressão Gênica , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Transgênicos , Cromossomos Sexuais , Espermátides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA