Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chembiochem ; 25(6): e202400019, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311594

RESUMO

Stable isotope labeling is an extremely useful tool for characterizing the structure, tracing the metabolism, and imaging the distribution of natural products in living organisms using mass-sensitive measurement techniques. In this study, a cyanobacterium was cultured in 15 N/13 C-enriched media to endogenously produce labeled, bioactive oligopeptides. The extent of heavy isotope incorporation in these peptides was determined with LC-MS, while the overall extent of heavy isotope incorporation in whole cells was studied with nanoSIMS and AFM-IR. Up to 98 % heavy isotope incorporation was observed in labeled cells. Three of the most abundant peptides, microcystin-LR (MCLR), cyanopeptolin-A (CYPA), and aerucyclamide-A (ACAA), were isolated and further studied with Raman and FTIR spectroscopies and DFT calculations. This revealed several IR and Raman active vibrations associated with functional groups not common in ribosomal peptides, like diene, ester, thiazole, thiazoline, and oxazoline groups, which could be suitable for future vibrational imaging studies. More broadly, this study outlines a simple and relatively inexpensive method for producing heavy-labeled natural products. Manipulating the bacterial culture conditions by the addition of specific types and amounts of heavy-labeled nutrients provides an efficient means of producing heavy-labeled natural products for mass-sensitive imaging studies.


Assuntos
Produtos Biológicos , Cianobactérias , Vibração , Peptídeos/química , Isótopos , Marcação por Isótopo/métodos
2.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055063

RESUMO

Mitogen-activated protein kinase 4 (MPK4) was first identified as a negative regulator of systemic acquired resistance. It is also an important kinase involved in many other biological processes in plants, including cytokinesis, reproduction, and photosynthesis. Arabidopsis thaliana mpk4 mutant is dwarf and sterile. Previous omics studies including genomics, transcriptomics, and proteomics have revealed new functions of MPK4 in different biological processes. However, due to challenges in metabolomics, no study has touched upon the metabolomic profiles of the mpk4 mutant. What metabolites and metabolic pathways are potentially regulated by MPK4 are not known. Metabolites are crucial components of plants, and they play important roles in plant growth and development, signaling, and defense. Here we used targeted and untargeted metabolomics to profile metabolites in the wild type and the mpk4 mutant. We found that in addition to the jasmonic acid and salicylic acid pathways, MPK4 is involved in polyamine synthesis and photosynthesis. In addition, we also conducted label-free proteomics of the two genotypes. The integration of metabolomics and proteomics data allows for an insight into the metabolomic networks that are potentially regulated by MPK4.


Assuntos
Metabolismo Energético , Redes e Vias Metabólicas , RNA Helicases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Mutação , Fenótipo , Proteoma , RNA Helicases/genética , Transcriptoma
3.
J Proteome Res ; 18(3): 826-840, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632760

RESUMO

Arabidopsis MAP kinase 4 (MPK4) has been proposed to be a negative player in plant immunity, and it is also activated by pathogen-associated molecular patterns (PAMPs), such as flg22. The molecular mechanisms by which MPK4 is activated and regulates plant defense remain elusive. In this study, we investigated Arabidopsis defense against a bacterial pathogen Pseudomonas syringae pv tomato ( Pst) DC3000 when Brassica napus MPK4 ( BnMPK4) is overexpressed. We showed an increase in pathogen resistance and suppression of jasmonic acid (JA) signaling in the BnMPK4 overexpressing (OE) plants. We also showed that the OE plants have increased sensitivity to flg22-triggered reactive oxygen species (ROS) burst in guard cells, which resulted in enhanced stomatal closure compared to wild-type (WT). During flg22 activation, dynamic phosphorylation events within and outside of the conserved TEY activation loop were observed. To elucidate how BnMPK4 functions during the defense response, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify BnMPK4 interacting proteins in the absence and presence of flg22. Quantitative proteomic analysis revealed a shift in the MPK4-associated protein network, providing insight into the molecular functions of MPK4 at the systems level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Mapas de Interação de Proteínas/imunologia , Proteínas de Bactérias/farmacologia , Ciclopentanos/metabolismo , Resistência à Doença , Flagelina/imunologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Oxilipinas/metabolismo , Fosforilação/imunologia , Doenças das Plantas/imunologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
4.
Exp Eye Res ; 154: 53-63, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27826074

RESUMO

We aimed to investigate the proteome changes in anatomical regions of sclera during growth and development of the rabbit. Sclera from New Zealand white rabbits of three ages (1 month, 2 months and 6 months) was dissected into three segments - anterior, equatorial, and posterior. A total of 36 samples were divided into groups by age and anatomical region. Tryptic digests of total proteins were analyzed by liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Label-free quantification based on spectral counts was used to determine the relative protein abundance and identify proteins with statistically significant differences between age groups or anatomical regions of the sclera. Western blotting was performed to validate some of the differentially expressed proteins. A total of 840 non-redundant proteins was identified in the sclera at different ages and regions with protein and peptide false discovery rate (FDR) at ≤1.0% and ≤0.1%, respectively. Differentially expressed proteins were identified by comparing age or anatomical region. Among these, periostin showed decreasing abundance with age, while myocilin, latent-transforming growth factor beta-binding protein 2, hyaluronan, proteoglycan link protein 1 and selenbp1 showed increasing abundance with age. In mature rabbits, alcohol dehydrogenase showed region-related differences in the sclera. Periostin showed an age-related decrease while selenbp1 showed an age-related increase in abundance in the anterior region. Vitronectin and extracellular superoxide dismutase had greater expression with age in the equatorial and posterior regions, respectively. The age related differential expression of periostin and selenbp1 was confirmed by western blotting. In conclusion, the protein profile of sclera showed age- and region-related differences. The differential protein profiles provide a baseline for understanding changes in the protein expression in the young and mature rabbit that appears to show regional changes. The changes observed in the present study add to the existing knowledge about regional alterations in biomechanical properties of sclera during growth.


Assuntos
Envelhecimento/metabolismo , Proteínas do Olho/metabolismo , Proteoma/análise , Proteômica/métodos , Esclera/crescimento & desenvolvimento , Esclera/metabolismo , Animais , Western Blotting , Cromatografia Líquida , Modelos Animais , Coelhos , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 15(4): 6265-85, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24736779

RESUMO

The overproduction of reactive oxygen and nitrogen species (ROS and RNS) can have deleterious effects in the cell, including structural and possible activity-altering modifications to proteins. Peroxynitrite is one such RNS that can result in a specific protein modification, nitration of tyrosine residues to form nitrotyrosine, and to date, the identification of nitrotyrosine sites in proteins continues to be a major analytical challenge. We have developed a method by which 15N-labeled nitrotyrosine groups are generated on peptide or protein standards using stable isotope-labeled peroxynitrite (O15NOO-), and the resulting standard is mixed with representative samples in which nitrotyrosine formation is to be measured by mass spectrometry (MS). Nitropeptide MS/MS spectra are filtered using high mass accuracy Fourier transform MS (FTMS) detection of the nitrotyrosine immonium ion. Given that the nitropeptide pair is co-isolated for MS/MS fragmentation, the nitrotyrosine immonium ions (at m/z=181 or 182) can be used for relative quantitation with negligible isotopic interference at a mass resolution of greater than 50,000 (FWHM, full width at half-maximum). Furthermore, the standard potentially allows for the increased signal of nitrotyrosine-containing peptides, thus facilitating selection for MS/MS in a data-dependent mode of acquisition. We have evaluated the methodology in terms of nitrotyrosine site identification and relative quantitation using nitrated peptide and protein standards.


Assuntos
Espectrometria de Massas , Espectrometria de Massas em Tandem , Tirosina/análogos & derivados , Angiotensina I/química , Angiotensina I/metabolismo , Animais , Bovinos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Análise de Fourier , Marcação por Isótopo , Isótopos de Nitrogênio/química , Ácido Peroxinitroso/química , Ratos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tirosina/análise
7.
Proteomics ; 13(6): 904-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319436

RESUMO

Proteomics is a rapidly transforming interdisciplinary field of research that embraces a diverse set of analytical approaches to tackle problems in fundamental and applied biology. This viewpoint article highlights the benefits of interlaboratory studies and standardization initiatives to enable investigators to address many of the challenges found in proteomics research. Among these initiatives, we discuss our efforts on a comprehensive performance standard for characterizing PTMs by MS that was recently developed by the Association of Biomolecular Resource Facilities (ABRF) Proteomics Standards Research Group (sPRG).


Assuntos
Laboratórios/normas , Espectrometria de Massas/normas , Processamento de Proteína Pós-Traducional , Proteômica , Comportamento Cooperativo , Guias como Assunto , Humanos , Proteoma/metabolismo , Padrões de Referência
8.
Methods Enzymol ; 676: 347-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280357

RESUMO

Among all post-translational modifications of proteins, phosphorylation is one of the most common and most studied. Since plants are sessile organisms, many physiological processes on which their survival depends are regulated by phosphorylation and dephosphorylation. Understanding the extent to which a plant proteome is phosphorylated at specific developmental stages and/or under certain environmental conditions is essential for identifying molecular switches that regulate physiological processes and responses. While most phosphoproteomic workflows proposed in the literature provide tools to exclusively analyze phosphorylated proteins, it is imperative to examine both the proteome and the phosphoproteome to reveal the true complexity of a biological process. Here we describe a mass spectrometry-based phosphoproteomics workflow to analyze both total and phosphorylated proteins. Our method includes phenol-based protein extraction, as well as techniques to measure the quantity and quality of protein extracts. In addition, we compare in detail the efficiency and suitability of in-gel and in-solution trypsin digestion methods. A metal oxide affinity chromatography technique for rapid and efficient enrichment of phosphorylated peptides and an LC-MS/MS method for analysis of the phosphorylated peptides are described. Finally, we present and discuss the results generated by applying this workflow to our study of the C3 to CAM transition in the common ice plant (Mesembryanthemum crystallinum). Overall, our workflow provides robust methods for the identification of phosphoproteins and total proteins. It can be broadly applied to many other organisms and sample types, and the results provide a more accurate picture of the molecular switches that regulate different biological processes.


Assuntos
Mesembryanthemum , Proteômica , Proteômica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Mesembryanthemum/metabolismo , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Óxidos , Fenóis/análise , Fosfopeptídeos/metabolismo
9.
Methods Enzymol ; 676: 369-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280358

RESUMO

TurboID is a new and efficient proximity labeling system that was first developed in living mammalian cells. TurboID is a modified bacterial biotin ligase that can be fused to a bait protein, which can then modify proximal interacting proteins with biotin. Prey proteins subsequently labeled with biotin tags will be pulled down with streptavidin-coated beads and identified by mass spectrometry-based proteomics. TurboID has been recently applied to living plant cells and provided promising results in identification of interacting proteins. Mitogen-activated protein kinase 4 (MPK4) is important for plant growth, development, and defense; however, the molecular mechanisms underlying the range of MPK4 functions are not completely known. Here we use modern proteomics together with the TurboID in a proof-of-concept study to profile the MPK4 interactome and uncover the functions of MPK4 in plant signaling cascades.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteômica/métodos , Biotina/metabolismo , Estreptavidina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligases/metabolismo , Mamíferos/metabolismo
10.
PLoS One ; 11(4): e0153560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27089221

RESUMO

Different anatomical regions have been defined in the vitreous humor including central vitreous, basal vitreous, vitreous cortex, vitreoretinal interface and zonule. In this study we sought to characterize changes in the proteome of vitreous humor (VH) related to compartments or age in New Zealand white rabbits (NZW). Vitreous humor was cryo-collected from young and mature New Zealand white rabbit eyes, and dissected into anterior and posterior compartments. All samples were divided into 4 groups: Young Anterior (YA), Young Posterior (YP), Mature Anterior (MA) and Mature Posterior (MP) vitreous. Tryptic digests of total proteins were analyzed by liquid chromatography followed by tandem mass spectrometry. Spectral count was used to determine the relative protein abundances and identify proteins with statistical differences between compartment and age groups. Western blotting was performed to validate some of the differentially expressed proteins. Our results showed that 231, 375, 273 and 353 proteins were identified in the YA, YP, MA and MP respectively. Fifteen proteins were significantly differentially expressed between YA and YP, and 11 between MA and MP. Carbonic anhydrase III, lambda crystallin, alpha crystallin A and B, beta crystallin B1 and B2 were more abundant in the anterior region, whereas vimentin was less abundant in the anterior region. For comparisons between age groups, 4 proteins were differentially expressed in both YA relative to MA and YP relative to MP. Western blotting confirmed the differential expression of carbonic anhydrase III, alpha crystallin B and beta crystallin B2. The protein profiles of the vitreous humor showed age- and compartment-related differences. This differential protein profile provides a baseline for understanding the vitreous compartmentalization in the rabbit and suggests that further studies profiling proteins in different compartments of the vitreous in other species may be warranted.


Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Proteoma/análise , Proteômica/métodos , Corpo Vítreo/crescimento & desenvolvimento , Corpo Vítreo/metabolismo , Animais , Western Blotting , Cromatografia Líquida , Feminino , Coelhos , Espectrometria de Massas em Tandem
11.
Sci Rep ; 6: 28451, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324416

RESUMO

Alternaria alternata f.sp. Lycopersici (AAL) toxin induces programmed cell death (PCD) in susceptible tomato (Solanum lycopersicum) leaves. Jasmonate (JA) promotes AAL toxin induced PCD in a COI1 (coronatine insensitive 1, JA receptor)-dependent manner by enhancement of reactive oxygen species (ROS) production. To further elucidate the underlying mechanisms of this process, we performed a comparative proteomic analysis using tomato jasmonic acid insensitive1 ( jai1), the receptor mutant of JA, and its wild type (WT) after AAL toxin treatment with or without JA treatment. A total of 10367 proteins were identified in tomato leaves using isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics approach. 2670 proteins were determined to be differentially expressed in response to AAL toxin and JA. Comparison between AAL toxin treated jai1 and its WT revealed the COI1-dependent JA pathway regulated proteins, including pathways related to redox response, ceramide synthesis, JA, ethylene (ET), salicylic acid (SA) and abscisic acid (ABA) signaling. Autophagy, PCD and DNA damage related proteins were also identified. Our data suggest that COI1-dependent JA pathway enhances AAL toxin induced PCD through regulating the redox status of the leaves, other phytohormone pathways and/or important PCD components.


Assuntos
Autofagia/efeitos dos fármacos , Ciclopentanos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Oxilipinas/toxicidade , Proteínas de Plantas/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Esfingosina/toxicidade , Ciclopentanos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Mutagênese , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
12.
Sci Rep ; 6: 33635, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680870

RESUMO

Fruit ripening is a complex and genetically programmed process. Brassinosteroids (BRs) play an essential role in plant growth and development, including fruit ripening. As a central component of BR signaling, the transcription factor BZR1 is involved in fruit development in tomato. However, the transcriptional network through which BZR1 regulates fruit ripening is mostly unknown. In this study, we use isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology to explore important proteins regulated by BZR1 in two independent tomato transgenic lines over-expressing BZR1-1D at four ripening stages, identifying 411 differentially expressed proteins. These proteins were implicated in light reaction, plant hormone pathways and cell-wall-related metabolism, etc. The 'light reaction' metabolic pathway was identified as a markedly enhanced pathway by BZR1 during tomato fruit ripening. The protein level of a probable 2-oxoglutarate-dependent dioxygenase 2-ODD2, involved in gibberellin biosynthesis was significantly increased at all four developmental and ripening stages. The results reveal molecular links between BR signaling pathway and downstream components involved in multiple ripening-associated events during tomato fruit ripening, which will provide new insights into the molecular mechanisms underlying tomato ripening regulatory networks, and be potential in understanding BR-regulated fruit ripening.

13.
J Proteomics ; 133: 48-53, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26691838

RESUMO

Thioredoxins (Trx) play central roles in cellular redox regulation. Although hundreds of Trx targets have been identified using different approaches, the capture of targets in a quantitative and efficient manner is challenging. Here we report a high-throughput method using cysteine reactive tandem mass tag (cysTMT) labeling followed by liquid chromatography (LC)-mass spectrometry (MS) to screen for Trx targets. Compared to existing methods, this approach allows for i) three replicates of pairwise comparison in a single LC-MS run to reduce run-to-run variation; ii) efficient enrichment of cysteine-containing peptides that requires low protein input; and iii) accurate quantification of the cysteine redox status and localization of the Trx targeted cysteine residues. Application of this method in guard cell-enriched epidermal peels from Brassica napus revealed 80 Trx h targets involved in a broad range of processes, including photosynthesis, stress response, metabolism and cell signaling. The adaption of this protocol in other systems will greatly improve our understanding of the Trx function in regulating cellular redox homeostasis. BIOLOGICAL SIGNIFICANCE: Redox homeostasis is tightly regulated for proper cellular activities. Specific protein-protein interactions between redox active molecules such as thioredoxin (Trx) and target proteins constitute the basis for redox-regulated biological processes. The use of cysTMT quantitative proteomics for studying Trx reactions enabled identification of potential Trx targets that provide important insights into the redox regulation in guard cells, a specialized plant cell type responsible for sensing of environmental signals, gas exchange and plant productivity.


Assuntos
Brassica napus/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Tiorredoxinas/metabolismo , Oxirredução , Proteômica/métodos
14.
J Biomol Tech ; 16(2): 112-24, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16030318

RESUMO

In this work we present a hybrid linear trap/Fourier transform ion cyclotron resonance (ICR) mass spectrometer to perform protein sequencing using the bottom-up approach. We demonstrate that incorporation of the linear trap greatly enhances the overall performance of the hybrid system for the study of complex peptide mixtures separated by fast high-performance liquid chromatography gradients. The ability to detect in the linear trap enables employment of automatic gain control to greatly reduce space charging in the ICR cell irregardless of ion flux. Resulting accurate mass measurements of 2 ppm or better using external calibration are achieved for the base peak as well as ions at 2% relative abundance. The linear trap is used to perform ion accumulation and activation prior to detection in the ICR cell which increases the scan rate. The increased duty cycle allows for data-dependent mass analysis of coeluting peptides to be acquired increasing protein sequence coverage without increasing the gradient length. In addition, the linear trap could be used as an ion detection device to perform simultaneous detection of tandem mass spectra with full scan mass spectral detection in the ICR cell resulting in the fastest scan cycles for performing bottom-up sequencing of protein digests. Comparisons of protein sequence coverage are presented for product ion detection in the linear trap and ICR cell.


Assuntos
Análise de Fourier , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Sequência de Aminoácidos , Angiotensinas/química , Animais , Cromatografia Líquida de Alta Pressão , Ciclotrons , Cavalos , Dados de Sequência Molecular , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
PLoS One ; 8(3): e57118, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533573

RESUMO

Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidative decarboxylation step in leucine biosynthesis caused imbalance of amino acid homeostasis, redox changes and oxidative stress, increased protein synthesis, as well as a decline in photosynthesis, which led to rearrangement of central metabolism and growth retardation. Disruption of IPMDHs involved in aliphatic glucosinolate biosynthesis led to synchronized increase of both upstream and downstream biosynthetic enzymes, and concomitant repression of the degradation pathway, indicating metabolic regulatory mechanisms in controlling glucosinolate biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Malato Desidrogenase/metabolismo , Metabolômica/métodos , Proteômica/métodos , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase/genética , Fotossíntese/genética , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA