Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 600(2): 181-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938001

RESUMO

This paper summarizes the present knowledge on how positive allosteric modulators (PAMs) interact with the ligand-binding domain (LBD) of AMPA and kainate receptors, based on structure determinations. AMPA and kainate receptors belong to the family of ionotropic glutamate receptors that are responsible for mediating the majority of fast excitatory neurotransmission. These receptors have been related to brain disorders, e.g. Alzheimer's disease and attention deficit hyperactivity disorder. PAMs are small molecules that potentiate AMPA and kainate receptor currents by interfering with receptor desensitization. Therefore, PAMs are considered to be of interest for the development of pharmacological tools. Whereas PAMs for AMPA receptors have been known for several years, only recently have PAMs for kainate receptors been reported. Today, >80 structures are available for AMPA receptors with PAMs. These PAMs bind at the interface between two LBD subunits in the vicinity of residue 775, which is important for functional differences between flip and flop isoforms of AMPA receptors. PAMs can be divided into five classes based on their binding mode. The most potent PAM reported to date belongs to class 3, which comprises dimerized PAMs. Three structures of the kainate receptor GluK1 were determined with PAMs belonging to class 2. One PAM enhances kainate receptor currents 5- to 59-fold but shows 100-fold lower potency compared to AMPA receptors. Selective PAMs for kainate receptors will be of great use as pharmacological tools for functional investigations in vivo and might potentially prove useful as drugs in controlling the activity of neuronal networks.


Assuntos
Receptores de AMPA , Receptores de Ácido Caínico , Neurônios/metabolismo , Domínios Proteicos , Receptores de AMPA/química , Receptores de Ácido Caínico/química
2.
J Org Chem ; 85(16): 10466-10478, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806085

RESUMO

We report the synthesis of a series of bis-functionalized ß-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed ß-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.

3.
Molecules ; 25(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276427

RESUMO

Crude ethyl acetate extract of Gerbera piloselloides (L.) Cass. was investigated by dual high-resolution PTP1B/α-glucosidase inhibition profiling and LC-PDA-HRMS. This indicated the presence of a series of unprecedented prenyl- and geranyl-substituted coumarin derivatives correlated with both α-glucosidase and PTP1B inhibitory activity. Repeated chromatographic separation targeting these compounds led to the isolation of 13 new compounds, of which ten could be isolated as both enantiomers after chiral separation. The structures of all isolated compounds were characterized by HRMS and extensive 1D and 2D NMR analysis. The absolute configurations of the isolated compounds were determined by comparison of experimental and calculated electronic circular dichroism spectra. Compound 6 features a rare furan-oxepane 5/7 ring system, possibly formed through addition of a geranyl unit to C-3 of 5-methylcoumarin, representing a new type of geranyl-substituted coumarin skeleton. Compounds 19 and 24 are the first examples of dimeric natural products consisting of both coumarin and chromone moieties.


Assuntos
Asteraceae/química , Dicroísmo Circular , Cumarínicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Neopreno/química , Vias Biossintéticas , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cumarínicos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Conformação Molecular , Neopreno/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Espectroscopia de Prótons por Ressonância Magnética
4.
J Org Chem ; 84(7): 3762-3779, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30864801

RESUMO

Peptidomimetic foldamers adopting well-defined three-dimensional structures while being stable toward proteolysis are of interest in biomedical research, chemical biology, and biomimetic materials science. Despite their backbone flexibility, ß-peptoids containing N-( S)-1-(1-naphthyl)ethyl ( Ns1npe) side chains can fold into unique triangular prism-shaped helices. We report herein the successful introduction of amino groups onto robustly folded ß-peptoid helices by construction and incorporation of novel chiral building blocks. This is the first example of an X-ray crystal structure of a linear ß-peptoid containing more than one type of side chain. We thus present a unique foldamer design comprising a robustly folded core with functionalized side chains protruding perpendicular to the helical axis to provide a highly predictable display of functional groups. This work paves the way for development of ß-peptoid foldamers with a desired function, such as catalytic properties or as scaffolds enabling polyvalent display.


Assuntos
Peptoides/química , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína
5.
Mol Pharmacol ; 91(6): 576-585, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28360094

RESUMO

Kainate receptors (KARs) consist of a class of ionotropic glutamate receptors, which exert diverse pre- and postsynaptic functions through complex signaling regulating the activity of neural circuits. Whereas numerous small-molecule positive allosteric modulators of the ligand-binding domain of (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors have been reported, no such ligands are available for KARs. In this study, we investigated the ability of three benzothiadiazine-based modulators to potentiate glutamate-evoked currents at recombinantly expressed KARs. 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM344) potentiated glutamate-evoked currents of GluK2a 21-fold at the highest concentration tested (200 µM), with an EC50 of 79 µM. BPAM344 markedly decreased desensitization kinetics (from 5.5 to 775 ms), whereas it only had a minor effect on deactivation kinetics. 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521) potentiated the recorded peak current amplitude of GluK2a 12-fold at a concentration of 300 µM with an EC50 value of 159 µM, whereas no potentiation of the glutamate-evoked response was observed for 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) at the highest concentration of modulator tested (300 µM). BPAM344 (100 µM) also potentiated the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b (5-fold), as well as the AMPA receptor subunit GluA1i (5-fold). X-ray structures of the three modulators in the GluK1 ligand-binding domain were determined, locating two modulator-binding sites at the GluK1 dimer interface. In conclusion, this study may enable the design of new positive allosteric modulators selective for KARs, which will be of great interest for further investigation of the function of KARs in vivo and may prove useful for pharmacologically controlling the activity of neuronal networks.


Assuntos
Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Ratos , Receptores de Ácido Caínico/agonistas , Relação Estrutura-Atividade , Difração de Raios X
6.
J Nat Prod ; 80(10): 2830-2834, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28930456

RESUMO

A phytochemical investigation of Seidlitzia rosmarinus collected along the shoreline of the Gulf of Aqaba in the remote southern desert region of the Sinai peninsula has revealed the presence of the registered drug metformin (4). However, analysis of the 14C content revealed the drug to be an anthropogenic contaminant. Consequently, natural product researchers should be aware that compounds isolated from plants might originate from environmental contamination rather than biosynthesis. The new natural product N-(4-hydroxyphenylethyl)-α-chloroferuloylamide was isolated as a mixture of the E and Z isomers along with a number of other well-established secondary metabolites.


Assuntos
Amaranthaceae/química , Metformina/isolamento & purificação , Metformina/farmacologia , Biologia Marinha , Metformina/química , Estrutura Molecular , Oceanos e Mares , Componentes Aéreos da Planta/química , Estereoisomerismo
7.
Biophys J ; 110(11): 2397-2406, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276258

RESUMO

The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, µM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 µM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 µM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Receptores de AMPA/metabolismo , Animais , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Calorimetria , Simulação por Computador , Cristalografia por Raios X , Óxidos S-Cíclicos/síntese química , Óxidos S-Cíclicos/química , Óxidos S-Cíclicos/farmacologia , Descoberta de Drogas , Entropia , Fármacos Atuantes sobre Aminoácidos Excitatórios/síntese química , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Modelos Moleculares , Estrutura Molecular , Oócitos , Ligação Proteica , Multimerização Proteica , Ratos , Receptores de AMPA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazinas/síntese química , Tiazinas/química , Tiazinas/farmacologia , Xenopus
8.
J Nat Prod ; 78(5): 1165-8, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25951057

RESUMO

Schizines A (1) and B (2), the first naturally occurring iminolactones (3,6-dihydro-2H-1,4-oxazin-2-one derivatives) to be reported, have been isolated from the fruiting bodies of Schizophyllym commune. In principle the 2-oxazinone moiety might have been formed by a reaction between the amino acid phenylalanine or tryptophan and an 2α-hydroxy-1-ketomarasmone. The alkaloids are unusual in that the carboxyl group of the amino acid precursor is preserved during the biosynthesis. The compounds showed some inhibition of the growth of cancer cells.


Assuntos
Antineoplásicos/isolamento & purificação , Lactonas/isolamento & purificação , Oxazinas/isolamento & purificação , Schizophyllum/química , Alcaloides/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Dinamarca , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Carpóforos/química , Humanos , Lactonas/química , Lactonas/farmacologia , Masculino , Estrutura Molecular , Oxazinas/química , Oxazinas/farmacologia , Fenilalanina/metabolismo , Triptofano/metabolismo
9.
Neurochem Res ; 39(10): 1895-905, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848194

RESUMO

A series of analogues of the glutamate receptor ligands (S)-2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) and AMOA were synthesized in which the 3-hydroxyisoxazole moiety was exchanged for a 3-hydroxypyrazole moiety. This exchange enables further substitution at the additional nitrogen atom in the heterocyclic core. Several of the analogues have activity at AMPA receptors equipotent to the antagonist ATPO, demonstrating that additional substitution can be accommodated in the antagonist binding site. Modelling studies offer an explanation for the pharmacological pattern observed for the compounds and suggest that this scaffold may be developed further to obtain subtype selective antagonists.


Assuntos
Isoxazóis/metabolismo , Pirazóis/metabolismo , Receptores de Glutamato/metabolismo , Animais , Cristalografia por Raios X , Isoxazóis/química , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Pirazóis/química , Ratos , Receptores de Glutamato/química , Receptores de Glutamato/efeitos dos fármacos , Xenopus
10.
J Med Chem ; 67(9): 7224-7244, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38648420

RESUMO

Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.


Assuntos
Piperidinas , Receptor 5-HT2A de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Humanos , Ratos , Descoberta de Drogas , Piperidinas/farmacologia , Piperidinas/química , Piperidinas/síntese química , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Relação Estrutura-Atividade , Dietilamida do Ácido Lisérgico/síntese química , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/farmacologia
11.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369668

RESUMO

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Assuntos
Encefalopatias , Óxidos S-Cíclicos , Ácido Glutâmico , Tiazinas , Humanos , Sítios de Ligação , Ligantes , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo
12.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101041

RESUMO

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Assuntos
Receptores de AMPA , Tiadiazinas , Camundongos , Animais , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Receptores de Ácido Caínico/metabolismo , Relação Estrutura-Atividade , Tiadiazinas/química , Regulação Alostérica
13.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145505

RESUMO

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Tiazinas , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/agonistas , Ácido Caínico/farmacologia , Óxidos S-Cíclicos , Zinco/metabolismo
14.
Eur J Med Chem ; 268: 116193, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364714

RESUMO

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 µM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias da Próstata/tratamento farmacológico , 3-Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1645-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999288

RESUMO

Positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) can serve as lead compounds for the development of cognitive enhancers. Several benzamide-type (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor modulators such as aniracetam, CX516 and CX614 have been shown to inhibit the deactivation of AMPA receptors with a less pronounced effect on desensitization. Despite CX516 being an extensively investigated AMPA receptor modulator and one of the few clinically evaluated compounds, the binding mode of CX516 to AMPA receptors has not been reported. Here, the structures of a GluA2 ligand-binding domain mutant in complex with CX516 and the 3-methylpiperidine analogue of CX516 (Me-CX516) are reported. The structures show that the binding modes of CX516 and Me-CX516 are similar to those of aniracetam and CX614 and that there is limited space for substitution at the piperidine ring of CX516. The results therefore support that CX516, like aniracetam and CX614, modulates deactivation of AMPA receptors.


Assuntos
Dioxóis/química , Piperidinas/química , Receptores de AMPA/química , Regulação Alostérica/genética , Animais , Cristalografia por Raios X , Dioxóis/metabolismo , Ligantes , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Mutação , Oxazinas/química , Oxazinas/metabolismo , Piperidinas/metabolismo , Ligação Proteica/genética , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
16.
Biochem J ; 441(1): 173-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21895609

RESUMO

Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 µM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores de AMPA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Benzotiadiazinas/farmacologia , Calorimetria/métodos , Cristalização , Óxidos S-Cíclicos/farmacologia , Diuréticos/farmacologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Receptores de AMPA/genética , Receptores Ionotrópicos de Glutamato/genética , Termodinâmica , Tiadiazinas/farmacologia
17.
J Struct Biol ; 180(1): 39-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22789682

RESUMO

Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor GluA2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which exhibited lower affinity for CBG-IV. The structure of GluA2 LBD and GluK3 LBD in complex with CBG-IV revealed similar binding site interactions to those of (S)-glutamate. No major conformational rearrangements compared to the (S)-glutamate bound conformation were found in GluK3 in order to accommodate CBG-IV, in contrast with GluA2 where a shift in lobe D2 binding site residues occurs, leading to an increased binding cavity volume compared to the (S)-glutamate bound structure.


Assuntos
Ciclobutanos/química , Glutamatos/química , Glicina/análogos & derivados , Receptores de AMPA/química , Receptores de Ácido Caínico/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Glicina/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Ratos , Receptores de AMPA/agonistas , Receptores de Ácido Caínico/agonistas , Estereoisomerismo , Receptor de GluK3 Cainato
18.
J Struct Biol ; 176(3): 307-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907808

RESUMO

Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1-5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.


Assuntos
Ácido Glutâmico/química , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Ratos , Receptor de GluK3 Cainato
19.
Org Biomol Chem ; 8(19): 4281-8, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20668766

RESUMO

Recently, we described the first small-molecule inhibitor, (E)-ethyl 2-cyano-3-(3,4-dichlorophenyl)acryloylcarbamate (1), of the PDZ domain of protein interacting with Calpha-kinase 1 (PICK1), a potential drug target against brain ischemia, pain and cocaine addiction. Herein, we explore structure-activity relationships of 1 by introducing subtle modifications of the acryloylcarbamate scaffold and variations of the substituents on this scaffold. The configuration around the double bond of 1 and analogues was settled by a combination of X-ray crystallography, NMR and density functional theory calculations. Thereby, docking studies were used to correlate biological affinities with structural considerations for ligand-protein interactions. The most potent analogue obtained in this study showed an improvement in affinity compared to 1 and is currently a lead in further studies of PICK1 inhibition.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Domínios PDZ , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Transporte/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Relação Estrutura-Atividade
20.
J Nat Prod ; 73(4): 776-9, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20166703

RESUMO

8-Epitacrolimus (2), a new l-pipecolic acid macrolide lactone, was obtained by base-catalyzed epimerization of tacrolimus (FK-506, 1), an important immunosuppressive drug, and its structure determined by a single-crystal X-ray diffraction method. The compound was fully characterized by spectroscopic techniques. The epimer is of importance due to its potential biological effects as well as because of its possible formation during formulation, handling, and use of tacrolimus products.


Assuntos
Imunossupressores , Tacrolimo , Cristalografia por Raios X , Imunossupressores/síntese química , Imunossupressores/química , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Tacrolimo/análogos & derivados , Tacrolimo/síntese química , Tacrolimo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA