Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3655-3670, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905675

RESUMO

Within geographic regions, the existing data suggest that physical habitat (bark, soil, etc.) is the strongest factor determining agroecosystem microbial community assemblage, followed by geographic location (site), and then management regime (organic, conventional, etc.). The data also suggest community similarities decay with increasing geographic distance. However, integrated hypotheses for these observations have not been developed. We formalized and tested such hypotheses by sequencing 3.8 million bacterial 16S, fungal ITS2 and non-fungal eukaryotic COI barcodes deriving from 108 samples across two habitats (soil and bark) from six vineyards sites under conventional or conservation management. We found both habitat and site significantly affected community assemblage, with habitat the stronger for bacteria only, but there was no effect of management. There was no evidence for community similarity distance-decay within sites within each habitat. While communities significantly differed between vineyard sites, there was no evidence for between site community similarity distance-decay apart from bark bacterial communities, and no correlations with soil and bark pH apart from soil bacterial communities. Thus, within habitats, vineyard sites represent discrete biodiversity islands, and while bacterial, fungal and non-fungal eukaryotic biodiversity mostly differs between sites, the distance by which they are separated does not define how different they are.


Assuntos
Microbiota , Solo , Fazendas , Casca de Planta , Fungos/genética , Microbiologia do Solo , Biodiversidade , Bactérias/genética
2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725210

RESUMO

There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.


Assuntos
Vitis , Vinho , Vinho/análise , Saccharomyces cerevisiae , Fermentação , Cromatografia Gasosa-Espectrometria de Massas
3.
Proc Biol Sci ; 289(1976): 20220400, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703046

RESUMO

Food poisoning caused by Campylobacter (campylobacteriosis) is the most prevalent bacterial disease associated with the consumption of poultry, beef, lamb and pork meat and unpasteurized dairy products. A variety of livestock industry, food chain and public health interventions have been implemented or proposed to reduce disease prevalence, some of which entail costs for producers and retailers. This paper describes a project that set out to summarize the natural science evidence base relevant to campylobacteriosis control in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.


Assuntos
Infecções por Campylobacter , Campylobacter , Disciplinas das Ciências Naturais , Animais , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Bovinos , Humanos , Carne/microbiologia , Prevalência , Ovinos
4.
Artigo em Inglês | MEDLINE | ID: mdl-33046494

RESUMO

Bacterial pathogens are rapidly evolving resistance to all clinically available antibiotics. One part of the solution to this complex issue is to better understand the resistance mechanisms to new and existing antibiotics. Here, we focus on two antibiotics. Teixobactin is a recently discovered promising antibiotic that is claimed to "kill pathogens without detectable resistance" (L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, et al., Nature 517:455-459, 2015, https://doi.org/10.1038/nature14098). Moenomycin A has been extensively used in animal husbandry for over 50 years with no meaningful antibiotic resistance arising. However, the nature, mechanisms, and consequences of the evolution of resistance to these "resistance-proof" compounds have not been investigated. Through a fusion of experimental evolution, whole-genome sequencing, and structural biology, we show that Staphylococcus aureus can develop significant resistance to both antibiotics in clinically meaningful timescales. The magnitude of evolved resistance to Arg10-teixobactin is 300-fold less than to moenomycin A over 45 days, and these are 2,500-fold and 8-fold less than evolved resistance to rifampicin (control), respectively. We have identified a core suite of key mutations, which correlate with the evolution of resistance, that are in genes involved in cell wall modulation, lipid synthesis, and energy metabolism. We show the evolution of resistance to these antimicrobials translates into significant cross-resistance against other clinically relevant antibiotics for moenomycin A but not Arg10-teixobactin. Lastly, we show that resistance is rapidly lost in the absence of antibiotic selection, especially for Arg10-teixobactin. These findings indicate that teixobactin is worth pursuing for clinical applications and provide evidence to inform strategies for future compound development and clinical management.


Assuntos
Depsipeptídeos , Animais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética
5.
Food Microbiol ; 87: 103358, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948613

RESUMO

Microbes influence the quality of agricultural commodities and contribute to their distinctive sensorial attributes. Increasingly studies have demonstrated not only differential geographic patterns in microbial communities and populations, but that these contribute to valuable regionally distinct agricultural product identities, the most well-known example being wine. However, little is understood about microbial geographic patterns at scales of less than 100 km. For wine, single vineyards are the smallest (and most valuable) scale at which wine is asserted to differ; however, it is unknown whether microbes play any role in agricultural produce differentiation at this scale. Here we investigate whether vineyard fungal communities and yeast populations driving the spontaneous fermentation of fruit from these same vineyards are differentiated using metagenomics and population genetics. Significant differentiation of fungal communities was revealed between four Central Otago (New Zealand) Pinot Noir vineyard sites. However, there was no vineyard demarcation between fermenting populations of S. cerevisiae. Overall, this provides evidence that vineyard microbiomes potentially contribute to vineyard specific attributes in wine. Understanding the scale at which microbial communities are differentiated, and how these communities influence food product attributes has direct economic implications for industry and could inform sustainable management practices that maintain and enhance microbial diversity.


Assuntos
Fungos/isolamento & purificação , Micobioma , Vitis/microbiologia , Vinho/análise , Análise Discriminante , Fermentação , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Nova Zelândia , Vinho/microbiologia
6.
Environ Microbiol ; 20(1): 75-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29052965

RESUMO

Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.


Assuntos
Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Vitis/microbiologia , Vinho/microbiologia , Fazendas , Fermentação/fisiologia , Fungos/genética , Humanos , Microbiota/genética , Nova Zelândia , Solo , Microbiologia do Solo
8.
Environ Microbiol ; 18(4): 1137-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26522264

RESUMO

Saccharomyces is one of the best-studied microbial genera, but our understanding of the global distributions and evolutionary histories of its members is relatively poor. Recent studies have altered our view of Saccharomyces' origin, but a lack of sampling from the vast majority of the world precludes a holistic perspective. We evaluate alternate Gondwanan and Far East Asian hypotheses concerning the origin of these yeasts. Being part of Gondwana, and only colonized by humans in the last ∼1000 years, New Zealand represents a unique environment for testing these ideas. Genotyping and ribosomal sequencing of samples from North Island native forest parks identified a widespread population of Saccharomyces. Whole genome sequencing identified the presence of S. arboricola and S. eubayanus in New Zealand, which is the first report of S. arboricola outside Far East Asia, and also expands S. eubayanus' known distribution to include the Oceanic region. Phylogenomic approaches place the S. arboricola population as significantly diverged from the only other sequenced Chinese isolate but indicate that S. eubayanus might be a recent migrant from South America. These data tend to support the Far East Asian origin of the Saccharomyces, but the history of this group is still far from clear.


Assuntos
Florestas , Saccharomyces/classificação , Saccharomyces/genética , Microbiologia do Solo , Ásia , Sequência de Bases , Evolução Biológica , Genótipo , Nova Zelândia , RNA Ribossômico/genética , Saccharomyces/isolamento & purificação , América do Sul
9.
FEMS Yeast Res ; 16(1): fov102, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26568201

RESUMO

Due to its commercial value and status as a research model there is an extensive body of knowledge concerning Saccharomyces cerevisiae's cell biology and genetics. Investigations into S. cerevisiae's ecology are comparatively lacking, and are mostly focused on the behaviour of this species in high sugar, fruit-based environments; however, fruit is ephemeral, and presumably, S. cerevisiae has evolved a strategy to survive when this niche is not available. Among other places, S. cerevisiae has been isolated from soil which, in contrast to fruit, is a permanent habitat. We hypothesize that S. cerevisiae employs a life history strategy targeted at self-preservation rather than growth outside of the fruit niche, and resides in forest niches, such as soil, in a dormant and resistant sporulated state, returning to fruit via vectors such as insects. One crucial aspect of this hypothesis is that S. cerevisiae must be able to sporulate in the 'forest' environment. Here, we provide the first evidence for a natural environment (soil) where S. cerevisiae sporulates. While there are further aspects of this hypothesis that require experimental verification, this is the first step towards an inclusive understanding of the more cryptic aspects of S. cerevisiae's ecology.


Assuntos
Temperatura Baixa , Viabilidade Microbiana/efeitos da radiação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Microbiologia do Solo , Esporos Fúngicos/crescimento & desenvolvimento
10.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744274

RESUMO

Humans have acted as vectors for species and expanded their ranges since at least the dawn of agriculture. While relatively well characterised for macrofauna and macroflora, the extent and dynamics of human-aided microbial dispersal is poorly described. We studied the role which humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the world's most important microbes, using whole genome sequencing. We include 52 strains representative of the diversity in New Zealand to the global set of genomes for this species. Phylogenomic approaches show an exclusively European origin of the New Zealand population, with a minimum of 10 founder events mostly taking place over the last 1000 years. Our results show that humans have expanded the range of S. cerevisiae and transported it to New Zealand where it was not previously present, where it has now become established in vineyards, but radiation to native forests appears limited.


Assuntos
Fazendas , Filogeografia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/isolamento & purificação , Vitis/microbiologia , Genoma Fúngico , Humanos , Nova Zelândia , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
11.
FEMS Yeast Res ; 15(3)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725024

RESUMO

Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe.


Assuntos
Ecossistema , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/fisiologia , Adaptação Biológica , Ecologia , Modelos Teóricos
12.
J Chem Ecol ; 41(10): 929-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26392279

RESUMO

Recent work suggests that Drosophila and Saccharomyces yeasts may establish a mutualistic association, and that this is driven by chemical communication. While individual volatiles have been implicated in the attraction of D. melanogaster, the semiochemicals affecting the behavior of the sibling species D. simulans are less well characterized. Here, we scrutinized a broad range of volatiles produced by attractive and repulsive yeasts to experimentally evaluate the chemical nature of communication between these species. When grown in liquid or on agar-solidified grape juice, attraction to S. cerevisiae was driven primarily by 3-methylbutyl acetate (isoamyl acetate) and repulsion by acetic acid, a known attractant to D. melanogaster (also known as vinegar fly). By using T-maze choice tests and synthetic compounds, we showed that these responses are strongly influenced by compound concentration. Moreover, the behavioral response is impacted further by the chemical context of the environment. Thus, chemical communication between yeasts and flies is complex, and is not driven simply by the presence of single volatiles, but modulated by compound interactions. The ecological context of chemical communication needs to be taken into consideration when testing for ecologically realistic responses.


Assuntos
Drosophila simulans/fisiologia , Feromônios/metabolismo , Saccharomyces cerevisiae/fisiologia , Simbiose , Ácido Acético/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Pentanóis/metabolismo , Saccharomyces cerevisiae/genética
13.
Ecol Lett ; 17(10): 1257-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041133

RESUMO

Niche construction theory explains how organisms' niche modifications may feed back to affect their evolutionary trajectories. In theory, the evolution of other species accessing the same modified niche may also be affected. We propose that this niche construction may be a general mechanism driving the evolution of mutualisms. Drosophilid flies benefit from accessing yeast-infested fruits, but the consequences of this interaction for yeasts are unknown. We reveal high levels of variation among strains of Saccharomyces cerevisiae in their ability to modify fruits and attract Drosophila simulans. More attractive yeasts are dispersed more frequently, both in the lab and in the field, and flies associated with more attractive yeasts have higher fecundity. Although there may be multiple natural yeast and fly species interactions, our controlled assays in the lab and field provide evidence of a mutualistic interaction, facilitated by the yeast's niche modification.


Assuntos
Evolução Biológica , Drosophila/genética , Ecossistema , Saccharomyces cerevisiae/genética , Simbiose , Animais , Feminino , Frutas/microbiologia , Aptidão Genética , Vitis
14.
Environ Microbiol ; 16(9): 2848-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24650123

RESUMO

We know relatively little of the distribution of microbial communities generally. Significant work has examined a range of bacterial communities, but the distribution of microbial eukaryotes is less well characterized. Humans have an ancient association with grape vines (Vitis vinifera) and have been making wine since the dawn of civilization, and fungi drive this natural process. While the molecular biology of certain fungi naturally associated with vines and wines is well characterized, complementary investigations into the ecology of fungi associated with fruiting plants is largely lacking. DNA sequencing technologies allow the direct estimation of microbial diversity from a given sample, avoiding culture-based biases. Here, we use deep community pyrosequencing approaches, targeted at the 26S rRNA gene, to examine the richness and composition of fungal communities associated with grapevines and test for geographical community structure among four major regions in New Zealand (NZ). We find over 200 taxa using this approach, which is 10-fold more than previously recovered using culture-based methods. Our analyses allow us to reject the null hypothesis of homogeneity in fungal species richness and community composition across NZ and reveal significant differences between major areas.


Assuntos
Frutas/microbiologia , Fungos/classificação , Análise de Sequência de DNA/métodos , Vitis/microbiologia , DNA Fúngico/genética , Fungos/genética , Nova Zelândia , RNA Ribossômico/genética
15.
Talanta ; 274: 125954, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599113

RESUMO

Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis.


Assuntos
Solo , Solo/química , Microbiologia do Solo , Fungos , Biodiversidade , Nova Zelândia
16.
Proc Biol Sci ; 280(1770): 20131875, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24048156

RESUMO

Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.


Assuntos
Quercus/microbiologia , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/fisiologia , Vitis/microbiologia , Evolução Molecular , Aptidão Genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Reprodução , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Simbiose
17.
Sci Total Environ ; 860: 160484, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436632

RESUMO

The restoration of degraded lands and minimizing the degradation of productive lands are at the forefront of many environmental land management schemes around the world. A key indicator of soil productivity is soil organic carbon (SOC), which influences the provision of most soil ecosystem services. A major challenge in direct measurement of changes in SOC stock is that it is difficult to detect within a short timeframe relevant to land managers. In this study, we sought to identify suitable early indicators of changes in SOC stock and their drivers. A meta-analytical approach was used to synthesize global data on the impacts of arable land conversion to other uses on total SOC stock, 12 different SOC fractions and three soil structural properties. The conversion of arable lands to forests and grasslands accounted for 91 % of the available land use change datasets used for the meta-analysis and were mostly from Asia and Europe. Land use change from arable lands led to 50 % (32-68 %) mean increase in both labile (microbial biomass C and particulate organic C - POC) and passive (microaggregate, 53-250 µm diameter; and small macroaggregate, 250-2000 µm diameter) SOC fractions as well as soil structural stability. There was also 37 % (24-50 %) mean increase in total SOC stock in the experimental fields where the various SOC fractions were measured. Only the POC and the organic carbon stored in small macroaggregates had strong correlation with total SOC: our findings reveal these two SOC fractions were predominantly controlled by biomass input to the soil rather than climatic factors and are thus suitable candidate indicators of short-term changes in total SOC stock. Further field studies are recommended to validate the predictive power of the equations we developed in this study and the use of the SOC metrics under different land use change scenarios.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Florestas , Biomassa , Sequestro de Carbono
18.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132737

RESUMO

The evolution of azole resistance in fungal pathogens presents a major challenge in both crop production and human health. Apple orchards across the world are faced with the emergence of azole fungicide resistance in the apple scab pathogen Venturia inaequalis. Target site point mutations observed in this fungus to date cannot fully explain the reduction in sensitivity to azole fungicides. Here, polygenic resistance to tebuconazole was studied across a population of V. inaequalis. Genotyping by sequencing allowed Quantitative Trait Loci (QTLs) mapping to identify the genetic components controlling this fungicide resistance. Dose-dependent genetic resistance was identified, with distinct genetic components contributing to fungicide resistance at different exposure levels. A QTL within linkage group seven explained 65% of the variation in the effective dose required to reduce growth by 50% (ED50). This locus was also involved in resistance at lower fungicide doses (ED10). A second QTL in linkage group one was associated with dose-dependent resistance, explaining 34% of variation at low fungicide doses (ED10), but did not contribute to resistance at higher doses (ED50 and ED90). Within QTL regions, non-synonymous mutations were observed in several ATP-Binding Cassette and Major Facilitator SuperFamily transporter genes. These findings provide insight into the mechanisms of fungicide resistance that have evolved in horticultural pathogens. Identification of resistance gene candidates supports the development of molecular diagnostics to inform management practices.

19.
Nat Commun ; 14(1): 6397, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907520

RESUMO

Identifying and interrupting transmission chains is important for controlling infectious diseases. One way to identify transmission pairs - two hosts in which infection was transmitted from one to the other - is using the variation of the pathogen within each single host (within-host variation). However, the role of such variation in transmission is understudied due to a lack of experimental and clinical datasets that capture pathogen diversity in both donor and recipient hosts. In this work, we assess the utility of deep-sequenced genomic surveillance (where genomic regions are sequenced hundreds to thousands of times) using a mouse transmission model involving controlled spread of the pathogenic bacterium Citrobacter rodentium from infected to naïve female animals. We observe that within-host single nucleotide variants (iSNVs) are maintained over multiple transmission steps and present a model for inferring the likelihood that a given pair of sequenced samples are linked by transmission. In this work we show that, beyond the presence and absence of within-host variants, differences arising in the relative abundance of iSNVs (allelic frequency) can infer transmission pairs more precisely. Our approach further highlights the critical role bottlenecks play in reserving the within-host diversity during transmission.


Assuntos
Variação Genética , Genômica , Animais , Feminino , Frequência do Gene , Bactérias , Sequenciamento de Nucleotídeos em Larga Escala
20.
BMC Evol Biol ; 12: 43, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22462622

RESUMO

BACKGROUND: The maintenance of sexuality is a classic problem in evolutionary biology because it is a less efficient mode of reproduction compared with asexuality; however, many organisms are sexual. Theoretical work suggests sex facilitates natural selection, and experimental data support this. However, there are fewer experimental studies that have attempted to determine the mechanisms underlying the advantage of sex. Two main classes of hypotheses have been proposed to explain its advantage: detrimental mutation clearance and beneficial mutation accumulation. Here we attempt to experimentally differentiate between these two classes by evolving Saccharomyces cerevisiae populations that differ only in their ability to undergo sex, and also manipulate mutation rate. We cannot manipulate the types of mutation that occur, but instead propagate populations in both stressful and permissive environments and assume that the extent of detrimental mutation clearance and beneficial mutation incorporation differs between them. RESULTS: After 300 mitotic generations interspersed with 11 rounds of sex we found there was no change or difference in fitness between sexuals and asexuals propagated in the permissive environment, regardless of mutation rate. Sex conferred a greater extent of adaptation in the stressful environment, and wild-type and elevated mutation rate sexual populations adapted equivalently. However, the asexual populations with an elevated mutation rate appeared more retarded in their extent of adaptation compared to asexual wild-type populations. CONCLUSIONS: Sex provided no advantage in the permissive environment where beneficial mutations were rare. We could not evaluate if sex functioned to clear detrimental mutations more effectively or not here as no additional fitness load was observed in the mutator populations. However, in the stressful environment, where detrimental mutations were likely of more consequence, and where beneficial mutations were apparent, sex provided an advantage. In the stressful environment asexuals were increasingly constrained in their extent of adaptation with increasing mutation rate. Sex appeared to facilitate adaptation not just by more rapidly combining beneficial mutations, but also by unlinking beneficial from detrimental mutations: sex allowed selection to operate on both types of mutations more effectively compared to asexual populations.


Assuntos
Adaptação Fisiológica/genética , Aptidão Genética , Taxa de Mutação , Mutação , Saccharomyces cerevisiae/genética , Evolução Molecular , Proteína 2 Homóloga a MutS/genética , Reprodução Assexuada/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA