Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(6): 1507-1521.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31031004

RESUMO

Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.


Assuntos
Hipóxia/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Feminino , Ataxia de Friedreich/metabolismo , Células HEK293 , Humanos , Hipóxia/fisiopatologia , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/fisiologia , Células K562 , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Frataxina
2.
Hum Mol Genet ; 32(16): 2600-2610, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260376

RESUMO

Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Policitemia , Humanos , Camundongos , Animais , Ataxia de Friedreich/genética , Modelos Animais de Doenças , Hipóxia , Oxigênio , Ataxia
3.
Circulation ; 148(8): 703-728, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37458106

RESUMO

Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.


Assuntos
Sistema Cardiovascular , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Adolescente , Adulto Jovem , Animais , Humanos , Estados Unidos/epidemiologia , Vaping/efeitos adversos , American Heart Association , Nicotina
4.
Nitric Oxide ; 146: 19-23, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521487

RESUMO

The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.


Assuntos
Hibernação , Neuroproteção , Hibernação/fisiologia , Animais , Humanos , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Encéfalo/metabolismo , Camundongos , Sciuridae/metabolismo , Doença de Leigh/metabolismo , Quinona Redutases/metabolismo
5.
Nitric Oxide ; 146: 24-30, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521488

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) is associated with intravascular hemolysis which depletes endogenous nitric oxide (NO). The impact of hemolysis on pulmonary arterial compliance (PAC) and right ventricular systolic function has not been explored yet. We hypothesized that decreased NO availability is associated with worse PAC and right ventricular systolic function after CPB. METHODS: This is a secondary analysis of an observational cohort study in patients undergoing cardiac surgery with CPB at Massachusetts General Hospital, USA (2014-2015). We assessed PAC (stroke volume/pulmonary artery pulse pressure ratio), and right ventricular function index (RVFI) (systolic pulmonary arterial pressure/cardiac output), as well as NO consumption at 15 min, 4 h and 12 h after CPB. Patients were stratified by CPB duration. Further, we assessed the association between changes in NO consumption with PAC and RVFI between 15min and 4 h after CPB. RESULTS: PAC was lowest at 15min after CPB and improved over time (n = 50). RVFI was highest -worse right ventricular function- at CPB end and gradually decreased. Changes in hemolysis, PAC and RVFI differed over time by CPB duration. PAC inversely correlated with total pulmonary resistance (TPR). TPR and PAC positively and negatively correlated with RVFI, respectively. NO consumption between 15min and 4 h after CPB correlated with changes in PAC (-0.28 ml/mmHg, 95%CI -0.49 to -0.01, p = 0.012) and RVFI (0.14 mmHg*L-1*min, 95%CI 0.10 to 0.18, p < 0.001) after multivariable adjustments. CONCLUSION: PAC and RVFI are worse at CPB end and improve over time. Depletion of endogenous NO may contribute to explain changes in PAC and RVFI after CPB.


Assuntos
Ponte Cardiopulmonar , Hemólise , Artéria Pulmonar , Função Ventricular Direita , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Função Ventricular Direita/fisiologia , Idoso , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Óxido Nítrico/metabolismo , Sístole/fisiologia , Estudos de Coortes , Complacência (Medida de Distensibilidade)
6.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774011

RESUMO

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Assuntos
COVID-19 , Insuficiência Respiratória , Adulto , Humanos , Óxido Nítrico/uso terapêutico , COVID-19/complicações , Método Simples-Cego , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/etiologia , Respiração Artificial , Administração por Inalação
7.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100749

RESUMO

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Selênio , Espécies Reativas de Oxigênio , Estresse Oxidativo , Peróxido de Hidrogênio/farmacologia
8.
Nitric Oxide ; 138-139: 17-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277062

RESUMO

BACKGROUND: Several nitric oxide (NO) generating devices have been developed to deliver NO between 1 part per million (ppm) and 80 ppm. Although inhalation of high-dose NO may exert antimicrobial effects, the feasibility and safety of producing high-dose (more than 100 ppm) NO remains to be established. In the current study, we designed, developed, and tested three high-dose NO generating devices. METHODS: We constructed three NO generating devices: a double spark plug NO generator, a high-pressure single spark plug NO generator, and a gliding arc NO generator. The NO and NO2 concentrations were measured at different gas flows and under various atmospheric pressures. The double spark plug NO generator was designed to deliver gas through an oxygenator and mixing with pure oxygen. The high-pressure and gliding arc NO generators were used to deliver gas through a ventilator into artificial lungs to mimic delivering high-dose NO in the clinical settings. The energy consumption was measured and compared among the three NO generators. RESULTS: The double spark plug NO generator produced 200 ± 2 ppm (mean ± SD) of NO at gas flow of 8 L/min (or 320 ± 3 ppm at gas flow of 5 L/min) with electrode gap of 3 mm. The nitrogen dioxide (NO2) levels were below 3.0 ± 0.1 ppm when mixing with various volumes of pure oxygen. The addition of a second generator increased the delivered NO from 80 (with one spark plug) to 200 ppm. With the high-pressure chamber, the NO concentration reached 407 ± 3 ppm with continuous air flow at 5 L/min when employing the 3 mm electrode gap under 2.0 atmospheric pressure (ATA). When compared to 1 ATA, NO production was increased 22% at 1.5 ATA and 34% at 2 ATA. The NO level was 180 ± 1 ppm when connecting the device to a ventilator with a constant inspiratory airflow of 15 L/min, and NO2 levels were below 1 (0.93 ± 0.02) ppm. The gliding arc NO generator produced up to 180 ± 4 ppm of NO when connecting the device to a ventilator, and the NO2 level was below 1 (0.91 ± 0.02) ppm in all testing conditions. The gliding arc device required more power (in watts) to generate the same concentrations of NO when compared to double spark plug or high-pressure NO generators. CONCLUSIONS: Our results demonstrated that it is feasible to enhance NO production (more than 100 ppm) while maintaining NO2 level relatively low (less than 3 ppm) with the three recently developed NO generating devices. Future studies might include these novel designs to deliver high doses of inhaled NO as an antimicrobial used to treat upper and lower respiratory tract infections.


Assuntos
Óxido Nítrico , Dióxido de Nitrogênio , Terapia Respiratória , Pulmão , Administração por Inalação , Oxigênio
9.
Anesthesiology ; 139(5): 628-645, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487175

RESUMO

BACKGROUND: The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS: Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS: IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, µm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS: The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema.


Assuntos
Lesões Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina , Imagem de Tensor de Difusão , Água
10.
Arterioscler Thromb Vasc Biol ; 42(2): e61-e73, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34809448

RESUMO

OBJECTIVE: Arterial stiffness is a risk factor for cardiovascular disease, including heart failure with preserved ejection fraction (HFpEF). MGP (matrix Gla protein) is implicated in vascular calcification in animal models, and circulating levels of the uncarboxylated, inactive form of MGP (ucMGP) are associated with cardiovascular disease-related and all-cause mortality in human studies. However, the role of MGP in arterial stiffness is uncertain. Approach and Results: We examined the association of ucMGP levels with vascular calcification, arterial stiffness including carotid-femoral pulse wave velocity (PWV), and incident heart failure in community-dwelling adults from the Framingham Heart Study. To further investigate the link between MGP and arterial stiffness, we compared aortic PWV in age- and sex-matched young (4-month-old) and aged (10-month-old) wild-type and Mgp+/- mice. Among 7066 adults, we observed significant associations between higher levels of ucMGP and measures of arterial stiffness, including higher PWV and pulse pressure. Longitudinal analyses demonstrated an association between higher ucMGP levels and future increases in systolic blood pressure and incident HFpEF. Aortic PWV was increased in older, but not young, female Mgp+/- mice compared with wild-type mice, and this augmentation in PWV was associated with increased aortic elastin fiber fragmentation and collagen accumulation. CONCLUSIONS: This translational study demonstrates an association between ucMGP levels and arterial stiffness and future HFpEF in a large observational study, findings that are substantiated by experimental studies showing that mice with Mgp heterozygosity develop arterial stiffness. Taken together, these complementary study designs suggest a potential role of therapeutically targeting MGP in HFpEF.


Assuntos
Proteínas de Ligação ao Cálcio/sangue , Proteínas da Matriz Extracelular/sangue , Insuficiência Cardíaca/sangue , Rigidez Vascular , Animais , Pressão Sanguínea , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Feminino , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Estudos Longitudinais , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Volume Sistólico , Proteína de Matriz Gla
11.
Br J Anaesth ; 131(1): 67-78, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142466

RESUMO

BACKGROUND: Although sex differences in anaesthetic sensitivity have been reported, what underlies these differences is unknown. In rodents, one source of variability in females is the oestrous cycle. Here we test the hypothesis that the oestrous cycle impacts emergence from general anaesthesia. METHODS: Time to emergence was measured after isoflurane (2 vol% for 1 h), sevoflurane (3 vol% for 20 min), dexmedetomidine (50 µg kg-1 i.v., infused over 10 min), or propofol (10 mg kg-1 i.v. bolus) during proestrus, oestrus, early dioestrus, and late dioestrus in female Sprague-Dawley rats (n=24). EEG recordings were taken during each test for power spectral analysis. Serum was analysed for 17ß-oestradiol and progesterone concentrations. The effect of oestrous cycle stage on return of righting latency was assessed using a mixed model. The association between righting latency and serum hormone concentration was tested by linear regression. Mean arterial blood pressure and arterial blood gases were assessed in a subset of rats after dexmedetomidine and compared in a mixed model. RESULTS: Oestrous cycle did not affect righting latency after isoflurane, sevoflurane, or propofol. When in the early dioestrus stage, rats emerged more rapidly from dexmedetomidine than in the proestrus (P=0.0042) or late dioestrus (P=0.0230) stage and showed reduced overall power in frontal EEG spectra 30 min after dexmedetomidine (P=0.0049). 17ß-Oestradiol and progesterone serum concentrations did not correlate with righting latency. Oestrous cycle did not affect mean arterial blood pressure or blood gases during dexmedetomidine. CONCLUSIONS: In female rats, the oestrous cycle significantly impacts emergence from dexmedetomidine-induced unconsciousness. However, 17ß-oestradiol and progesterone serum concentrations do not correlate with the observed changes.


Assuntos
Dexmedetomidina , Isoflurano , Propofol , Ratos , Feminino , Masculino , Animais , Propofol/farmacologia , Sevoflurano/farmacologia , Isoflurano/farmacologia , Dexmedetomidina/farmacologia , Progesterona/farmacologia , Ratos Sprague-Dawley , Anestesia Geral , Estradiol/farmacologia , Gases
12.
Lasers Surg Med ; 55(6): 590-600, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253390

RESUMO

BACKGROUND AND OBJECTIVES: Approximately 50,000 emergency department visits per year due to carbon monoxide (CO) poisoning occur in the United States alone. Tissue hypoxia can occur at very low CO concentration exposures because CO binds with a 250-fold higher affinity than oxygen to hemoglobin. The most effective therapy is 100% hyperbaric oxygen (HBO) respiration. However, there are only a limited number of cases with ready accessibility to the specialized HBO chambers. In previous studies, we developed an extracorporeal veno-venous membrane oxygenator that facilitates exposure of blood to an external visible light source to photo-dissociate carboxyhemoglobin (COHb) and significantly increase CO removal from CO-poisoned blood (photo-extracorporeal veno-venous membrane oxygenator [p-ECMO]). One objective of this study was to describe in vitro experiments with different laser wavelength sources to compare CO elimination rates in a small unit-cell ECMO device integrated with a light-diffusing optical fiber. A second objective was to develop a mathematical model that predicts CO elimination rates in the unit-cell p-ECMO  device design upon which larger devices can be based. STUDY DESIGN/MATERIAL AND METHODS: Two small unit-cell p-ECMO devices consisted of a plastic capillary with a length and inside diameter of 10 cm and 1.15 mm, respectively. Either five (4-1 device) or seven (6-1 device) gas exchange tubes were placed in the plastic capillary and a light-diffusing fiber was inserted into one of the gas exchange tubes. Light from lasers emitting either 635 nm or 465 nm wavelengths was coupled into the light-diffusing fiber as oxygen flowed through the gas exchange membranes. To assess the ability of the device to remove CO from blood in vitro, the percent COHb reduction in a single pass through the device was assessed with and without light. The Navier Stokes equations, Carreau-Yesuda model, Boltzman equation for light distribution, and hemoglobin kinetic rate equations, including photo-dissociation, were combined in a mathematical model to predict COHb elimination in the experiments. RESULTS: For the unit-cell devices, the COHb removal rate increases with increased 635 nm laser power, increased blood time in the device, and greater gas exchange membrane surface-to-blood volume ratio. The 6-1 device COHb half-life versus that of the 4-1 device with 4 W at 635 nm light was 1.5 min versus 4.25 min, respectively. At 1 W laser power, 635 nm and 465 nm exhibited similar CO removal rates. The COHb half-life times of the 6-1 device were 1.25, 2.67, and 8.5 min at 635 nm (4 W), 465 nm (1 W), and 100% oxygen only, respectively. The mathematical model predicted the experimental results. An analysis of the in vivo COHb half-life of oxygen respiration therapy versus an adjunct therapy with a p-ECMO device and oxygen respiration shows a reduction from 90 min to as low as 10 min, depending on the device design. CONCLUSION: In this study, we experimentally studied and developed a mathematical model of a small unit-cell ECMO device integrated with a light-diffusing fiber illuminated with laser light. The unit-cell device forms the basis for a larger device and, in an adjunct therapy with oxygen respiration, has the potential to remove COHb at much higher rates than oxygen therapy alone. The mathematical model can be used to optimize the design in practical implementations to quickly and efficiently remove CO from CO-poisoned blood.


Assuntos
Intoxicação por Monóxido de Carbono , Humanos , Intoxicação por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Hemoglobinas/análise , Hemoglobinas/metabolismo , Carboxihemoglobina/análise , Carboxihemoglobina/metabolismo , Oxigênio , Modelos Teóricos
13.
Nitric Oxide ; 125-126: 47-56, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716999

RESUMO

RATIONALE: Nitric oxide (NO) exerts its biological effects primarily via activation of guanylate cyclase (GC) and production of cyclic guanosine monophosphate. Inhaled NO improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CPR). However, mechanisms of the protective effects of breathing NO after cardiac arrest are incompletely understood. OBJECTIVE: To elucidate the mechanisms of beneficial effects of inhaled NO on outcomes after cardiac arrest. METHODS: Adult male C57BL/6J wild-type (WT) mice, GC-1 knockout mice, and chimeric WT mice with WT or GC-1 knockout bone marrow were subjected to 8 min of potassium-induced cardiac arrest to determine the role of GC-1 in bone marrow-derived cells. Mice breathed air or 40 parts per million NO for 23 h starting at 1 h after CPR. RESULTS: Breathing NO after CPR prevented hypercoagulability, cerebral microvascular occlusion, an increase in circulating polymorphonuclear neutrophils and neutrophil-to-lymphocyte ratio, and right ventricular dysfunction in WT mice, but not in GC-1 knockout mice, after cardiac arrest. The lack of GC-1 in bone marrow-derived cells diminished the beneficial effects of NO breathing after CPR. CONCLUSIONS: GC-dependent signaling in bone marrow-derived cells is essential for the beneficial effects of inhaled NO after cardiac arrest and CPR.


Assuntos
Parada Cardíaca , Óxido Nítrico , Animais , Medula Óssea , Guanilato Ciclase , Parada Cardíaca/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/farmacologia , Receptores de Superfície Celular
14.
Anesthesiology ; 137(6): 716-732, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170545

RESUMO

BACKGROUND: Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS: Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS: Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS: Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity.


Assuntos
Reanimação Cardiopulmonar , Dexmedetomidina , Parada Cardíaca , Hiperemia , Hipotermia Induzida , Hipotermia , Propofol , Masculino , Feminino , Animais , Camundongos , Propofol/efeitos adversos , Dexmedetomidina/efeitos adversos , Hiperemia/terapia , Camundongos Endogâmicos C57BL , Parada Cardíaca/tratamento farmacológico , Modelos Animais de Doenças , Eletroencefalografia
15.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195745

RESUMO

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Camundongos , Acetaldeído , Lesão Pulmonar Aguda/induzido quimicamente , Aldeídos/toxicidade , Formaldeído/toxicidade , Glicerol , Interleucina-6 , Propilenoglicol/toxicidade , Aerossóis e Gotículas Respiratórios , Fator de Necrose Tumoral alfa
16.
Am J Emerg Med ; 58: 5-8, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623183

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS: We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS: We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION: A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.


Assuntos
COVID-19 , Insuficiência Respiratória , Administração por Inalação , Serviço Hospitalar de Emergência , Humanos , Óxido Nítrico/uso terapêutico , Insuficiência Respiratória/terapia , SARS-CoV-2
17.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752971

RESUMO

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genética
18.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400339

RESUMO

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Assuntos
Tratamento Farmacológico da COVID-19 , Hospitalização , Óxido Nítrico/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Respiração/efeitos dos fármacos , Administração por Inalação , COVID-19/complicações , COVID-19/virologia , Relação Dose-Resposta a Droga , Humanos , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pneumonia Viral/complicações
19.
J Intensive Care Med ; 36(8): 900-909, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33783269

RESUMO

BACKGROUND: Right ventricular (RV) dysfunction is common and associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19). In non-COVID-19 acute respiratory distress syndrome, RV dysfunction develops due to pulmonary hypoxic vasoconstriction, inflammation, and alveolar overdistension or atelectasis. Although similar pathogenic mechanisms may induce RV dysfunction in COVID-19, other COVID-19-specific pathology, such as pulmonary endothelialitis, thrombosis, or myocarditis, may also affect RV function. We quantified RV dysfunction by echocardiographic strain analysis and investigated its correlation with disease severity, ventilatory parameters, biomarkers, and imaging findings in critically ill COVID-19 patients. METHODS: We determined RV free wall longitudinal strain (FWLS) in 32 patients receiving mechanical ventilation for COVID-19-associated respiratory failure. Demographics, comorbid conditions, ventilatory parameters, medications, and laboratory findings were extracted from the medical record. Chest imaging was assessed to determine the severity of lung disease and the presence of pulmonary embolism. RESULTS: Abnormal FWLS was present in 66% of mechanically ventilated COVID-19 patients and was associated with higher lung compliance (39.6 vs 29.4 mL/cmH2O, P = 0.016), lower airway plateau pressures (21 vs 24 cmH2O, P = 0.043), lower tidal volume ventilation (5.74 vs 6.17 cc/kg, P = 0.031), and reduced left ventricular function. FWLS correlated negatively with age (r = -0.414, P = 0.018) and with serum troponin (r = 0.402, P = 0.034). Patients with abnormal RV strain did not exhibit decreased oxygenation or increased disease severity based on inflammatory markers, vasopressor requirements, or chest imaging findings. CONCLUSIONS: RV dysfunction is common among critically ill COVID-19 patients and is not related to abnormal lung mechanics or ventilatory pressures. Instead, patients with abnormal FWLS had more favorable lung compliance. RV dysfunction may be secondary to diffuse intravascular micro- and macro-thrombosis or direct myocardial damage. TRIAL REGISTRATION: National Institutes of Health #NCT04306393. Registered 10 March 2020, https://clinicaltrials.gov/ct2/show/NCT04306393.


Assuntos
COVID-19/complicações , Insuficiência Respiratória/virologia , Disfunção Ventricular Direita/virologia , Adulto , Idoso , Estado Terminal , Feminino , Ventrículos do Coração , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , Índice de Gravidade de Doença , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Direita
20.
Circulation ; 139(6): 815-827, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586713

RESUMO

BACKGROUND: The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS: Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS: GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS: CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Benzoatos/uso terapêutico , Parada Cardíaca/terapia , Coração/efeitos dos fármacos , Pirimidinonas/uso terapêutico , Aldeído Oxirredutases/genética , Animais , Benzoatos/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Oxirredução , Pirimidinonas/farmacologia , Ressuscitação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA