Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395697

RESUMO

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos Antivirais
2.
J Med Virol ; 95(10): e29134, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37805977

RESUMO

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 104 nonendemic locations worldwide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.


Assuntos
Mpox , Orthopoxvirus , Humanos , Estudos Retrospectivos , Infecções Assintomáticas , Bioensaio , Reações Cruzadas
3.
Ann Neurol ; 90(4): 640-652, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338329

RESUMO

OBJECTIVE: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS: We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS: AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION: Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021;90:640-652.


Assuntos
Terapia Genética , Mitocôndrias/metabolismo , Miopatias Mitocondriais/terapia , Timidina Quinase/deficiência , Animais , Ensaios de Uso Compassivo , DNA Mitocondrial/genética , Humanos , Camundongos , Mitocôndrias/genética , Miopatias Mitocondriais/genética , Mutação/genética , Timidina/genética , Timidina/metabolismo , Timidina Quinase/genética
4.
FASEB J ; 34(6): 7404-7426, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307754

RESUMO

Fragile X syndrome (FXS) is the leading known inherited intellectual disability and the most common genetic cause of autism. The full mutation results in transcriptional silencing of the Fmr1 gene and loss of fragile X mental retardation protein (FMRP) expression. Defects in neuroenergetic capacity are known to cause a variety of neurodevelopmental disorders. Thus, we explored the integrity of forebrain mitochondria in Fmr1 knockout mice during the peak of synaptogenesis. We found inefficient thermogenic respiration due to futile proton leak in Fmr1 KO mitochondria caused by coenzyme Q (CoQ) deficiency and an open cyclosporine-sensitive channel. Repletion of mitochondrial CoQ within the Fmr1 KO forebrain closed the channel, blocked the pathological proton leak, restored rates of protein synthesis during synaptogenesis, and normalized the key phenotypic features later in life. The findings demonstrate that FMRP deficiency results in inefficient oxidative phosphorylation during the neurodevelopment and suggest that dysfunctional mitochondria may contribute to the FXS phenotype.


Assuntos
Respiração Celular/fisiologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Termogênese/fisiologia , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Prótons
6.
Apoptosis ; 20(8): 1048-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003816

RESUMO

Mevalonate kinase deficiency is a rare disease whose worst manifestation, characterised by severe neurologic impairment, is called mevalonic aciduria. The progressive neuronal loss associated to cell death can be studied in vitro with a simplified model based on a biochemical block of the mevalonate pathway and a subsequent inflammatory trigger. The aim of this study was to evaluate the effect of the mevalonate blocking on glial cells (BV-2) and the following effects on neuronal cells (SH-SY5Y) when the two populations were cultured together. To better understand the cross-talk between glial and neuronal cells, as it happens in vivo, BV-2 and SH-SY5Y were co-cultured in different experimental settings (alone, transwell, direct contact); the effect of mevalonate pathway biochemical block by Lovastatin, followed by LPS inflammatory trigger, were evaluated by analysing programmed cell death and mitochondrial membrane potential, cytokines' release and cells' morphology modifications. In this experimental condition, glial cells underwent an evident activation, confirmed by elevated pro-inflammatory cytokines release, typical of these disorders, and a modification in morphology. Moreover, the activation induced an increase in apoptosis. When glial cells were co-cultured with neurons, their activation caused an increase of programmed cell death also in neuronal cells, but only if the two populations were cultured in direct contact. Our findings, being aware of the limitations related to the cell models used, represent a preliminary step towards understanding the pathological and neuroinflammatory mechanisms occurring in mevalonate kinase diseases. Contact co-culture between neuronal and microglial cells seems to be a good model to study mevalonic aciduria in vitro, and to contribute to the identification of potential drugs able to block microglial activation for this orphan disease. In fact, in such a pathological condition, we demonstrated that microglial cells are activated and contribute to neuronal cell death. We can thus hypothesise that the use of microglial activation blockers could prevent this additional neuronal death.


Assuntos
Deficiência de Mevalonato Quinase/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lovastatina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Mevalônico/metabolismo , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
7.
Int J Mol Sci ; 15(4): 6843-56, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24758928

RESUMO

Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines' release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.


Assuntos
Ácido Mevalônico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocinas/metabolismo , Diterpenos/farmacologia , Humanos , Licopeno , Deficiência de Mevalonato Quinase/metabolismo , Deficiência de Mevalonato Quinase/patologia , Camundongos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Óxido Nítrico/metabolismo , Fitol/farmacologia , Terpenos/toxicidade
8.
mBio ; 15(1): e0225023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112467

RESUMO

IMPORTANCE: As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.


Assuntos
COVID-19 , Humanos , Prevalência , SARS-CoV-2/genética , Reações Cruzadas , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
9.
Front Immunol ; 15: 1382619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779671

RESUMO

Introduction: Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods: This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results: Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion: Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Masculino , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Ad26COVS1/imunologia , Adulto , Pessoa de Meia-Idade , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos , Imunoglobulina A/imunologia , Imunoglobulina A/sangue
10.
Pediatr Res ; 74(3): 266-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23760140

RESUMO

BACKGROUND: Mevalonate kinase deficiency (MKD) is a rare genetic autoinflammatory disease caused by blocking of the enzyme mevalonate kinase in the pathway of cholesterol and isoprenoids. The pathogenic mechanism originating an immune response in MKD patients has not been clearly understood. METHODS: We investigated the dysregulation of expression of selected cytokines and chemokines in the serum of MKD patients. The results have been compared with those observed in an MKD mouse model obtained by treating the mice with aminobisphosphonate, a molecule that is able to inhibit the cholesterol pathway, mimicking the genetic block characteristic of the disease. RESULTS: Interleukin (IL)-1ß, IL-5, IL-6, IL-9, IL-17, granulocyte colony-stimulating factor, monocyte chemotactic protein-1, tumor necrosis factor-α, and IL-4 expression were dysregulated in sera from MKD patients and mice. Moreover, geraniol, an exogenous isoprenoid, when administered to MKD mice, restored cytokines and chemokines levels with values similar to those of untreated mice. CONCLUSION: Our findings, which were obtained in patients and a mouse model mimicking the human disease, suggest that these cytokines and chemokines could be MKD specific and that isoprenoids could be considered as potential therapeutic molecules. The mouse model, even if with some limitations, was robust and suitable for routine testing of potential MKD drugs.


Assuntos
Quimiocinas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Deficiência de Mevalonato Quinase/imunologia , Monoterpenos Acíclicos , Animais , Difosfonatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Especificidade da Espécie , Terpenos
11.
Mediators Inflamm ; 2013: 434010, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533306

RESUMO

Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years) with young children and children (1-6 and 7-17 years). We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.


Assuntos
Citocinas/sangue , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon-alfa/sangue , Interleucina-12/sangue , Interleucina-15/sangue , Interleucina-1alfa/sangue , Interleucina-1beta/sangue , Interleucina-3/sangue , Interleucina-5/sangue , Fator Inibidor de Leucemia/sangue , Linfotoxina-alfa/sangue , Masculino
12.
Int J Mol Sci ; 14(12): 23274-88, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24287904

RESUMO

Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9), which is triggered by mitochondrial damage, and to pyroptosis (caspase-1). These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.


Assuntos
Apoptose , Deficiência de Mevalonato Quinase/enzimologia , Animais , Caspases/metabolismo , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/metabolismo , Humanos , Inflamassomos/metabolismo , Deficiência de Mevalonato Quinase/metabolismo , Deficiência de Mevalonato Quinase/patologia , Modelos Biológicos , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
13.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162953

RESUMO

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 103 non-endemic locations world-wide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay (MIA) using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important diagnostic tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.

14.
iScience ; 25(12): 105608, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36406863

RESUMO

A fraction of patients with COVID-19 develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines but often among patients with diverse demographics and comorbidity status. This study evaluated hospitalized vs. ambulatory patients with COVID-19 with demographic risk factors for severe COVID-19: median age of 63, >80% male, and >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines and chemokines. SARS-CoV-2-specific antibody levels and functions were similar in ambulatory and hospitalized patients. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters, along with higher IL-27 levels, was observed in hospitalized but not ambulatory cases. These data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19.

15.
medRxiv ; 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031663

RESUMO

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

16.
Front Immunol ; 12: 759688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987505

RESUMO

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Saliva/virologia , Vacinação
17.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444290

RESUMO

Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.


Assuntos
Ataxia/metabolismo , Indenos/farmacologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirazóis/farmacologia , Ubiquinona/deficiência , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Ataxia/tratamento farmacológico , Ataxia/genética , Ataxia/patologia , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Nefropatias/tratamento farmacológico , Nefropatias/genética , Nefropatias/patologia , Peroxidação de Lipídeos/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/genética , Debilidade Muscular/patologia , Podócitos/patologia , Proteínas Proto-Oncogênicas B-raf/genética , RNA-Seq , Ubiquinona/genética , Ubiquinona/metabolismo
19.
Cancer Res ; 80(1): 30-43, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31694905

RESUMO

The receptor kinase c-MET has emerged as a target for glioblastoma therapy. However, treatment resistance emerges inevitably. Here, we performed global metabolite screening with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, and identified substantial reprogramming of tumor metabolism involving oxidative phosphorylation and fatty acid oxidation (FAO) with substantial accumulation of acyl-carnitines accompanied by an increase of PGC1α in response to genetic (shRNA and CRISPR/Cas9) and pharmacologic (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-glucose, U-13C-glutamine, and U-13C-palmitic acid) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species. Genetic interference with PGC1α rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that cAMP response elements binding protein regulates the expression of PGC1α in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and ß-oxidation of fatty acids (etomoxir) enhanced the antitumor efficacy of c-MET inhibition. Synergistic cell death was observed with c-MET inhibition and gamitrinib treatment. In patient-derived xenograft models, combination treatments of crizotinib and etomoxir, and crizotinib and gamitrinib were significantly more efficacious than single treatments and did not induce toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibition and identified novel combination therapies that may enhance its therapeutic efficacy. SIGNIFICANCE: c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Sinergismo Farmacológico , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Humanos , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Proteômica , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Med ; 26(7): 1033-1036, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32398876

RESUMO

Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection.


Assuntos
Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Soroconversão , Adulto , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/sangue , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva , Estudos Longitudinais , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Pneumonia Viral/terapia , Pneumonia Viral/virologia , SARS-CoV-2 , Adulto Jovem , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA