Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 168(3): 401-14, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15684030

RESUMO

The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.


Assuntos
Caseína Quinase I/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Anticorpos/farmacologia , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Inibidores Enzimáticos/farmacologia , Genótipo , Inibidores de Dissociação do Nucleotídeo Guanina/farmacologia , Toxinas Marinhas , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/fisiologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Microcistinas , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/imunologia , Organelas/metabolismo , Organelas/fisiologia , Peptídeos Cíclicos/farmacologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas SNARE , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Solução Salina Hipertônica/farmacologia , Proteína 25 Associada a Sinaptossoma , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/imunologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/imunologia , Proteínas Ativadoras de ras GTPase/agonistas
2.
Biochim Biophys Acta ; 1641(2-3): 111-9, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12914952

RESUMO

SNARE proteins function at the center of membrane fusion reactions by forming complexes with each other via their coiled-coil domains. Several SNAREs have N-terminal domains (NTDs) that precede the coiled-coil domain and have critical functions in regulating the fusion cascade. This review will highlight recent findings on NTDs of syntaxins, the longin domain of VAMP proteins and SNAP-23/25 homologues in yeast. Biochemical and genetic experiments as well as the resolution of several NMR and crystal structures of SNARE NTDs shed light on their diverse function.


Assuntos
Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Transporte Vesicular , Animais , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas SNARE , Relação Estrutura-Atividade
3.
Mol Biol Cell ; 20(7): 1937-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19193765

RESUMO

Membrane fusion depends on multisubunit tethering factors such as the vacuolar HOPS complex. We previously showed that the vacuolar casein kinase Yck3 regulates vacuole biogenesis via phosphorylation of the HOPS subunit Vps41. Here, we link the identified Vps41 phosphorylation site to HOPS function at the endosome-vacuole fusion site. The nonphosphorylated Vps41 mutant (Vps41 S-A) accumulates together with other HOPS subunits on punctate structures proximal to the vacuole that expand in a class E mutant background and that correspond to in vivo fusion sites. Ultrastructural analysis of this mutant confirmed the presence of tubular endosomal structures close to the vacuole. In contrast, Vps41 with a phosphomimetic mutation (Vps41 S-D) is mislocalized and leads to multilobed vacuoles, indicative of a fusion defect. These two phenotypes can be rescued by overproduction of the vacuolar Rab Ypt7, revealing that both Ypt7 and Yck3-mediated phosphorylation modulate the Vps41 localization to the endosome-vacuole junction. Our data suggest that Vps41 phosphorylation fine-tunes the organization of vacuole fusion sites and provide evidence for a fusion "hot spot" on the vacuole limiting membrane.


Assuntos
Endossomos/metabolismo , Fusão de Membrana , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Caseína Quinase I/metabolismo , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Endossomos/ultraestrutura , Proteínas Ativadoras de GTPase/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/química
4.
J Cell Sci ; 119(Pt 12): 2477-85, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16720644

RESUMO

Palmitoylation stably anchors specific proteins to membranes, but may also have a direct effect on the function of a protein. The yeast protein Vac8 is required for efficient vacuole fusion, inheritance and cytosol-to-vacuole trafficking. It is anchored to vacuoles by an N-terminal myristoylation site and three palmitoylation sites, also known as the SH4 domain. Here, we address the role of Vac8 palmitoylation and show that the position and number of substrate cysteines within the SH4 domain determine the vacuole localization of Vac8: stable vacuole binding of Vac8 requires two cysteines within the N-terminus, regardless of the combination. Importantly, our data suggest that palmitoylation adds functionality to Vac8 beyond simple localization. A mutant Vac8 protein, in which the palmitoylation sites were replaced by a stretch of basic residues, still localizes to vacuole membranes and functions in cytosol-to-vacuole transport, but can only complement the function of Vac8 in morphology and inheritance if it also contains a single cysteine within the SH4 domain. Our data suggest that palmitoylation is not a mere hydrophobic anchor required solely for localization, but influences the protein function(s).


Assuntos
Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/fisiologia , Membrana Celular/metabolismo , Cisteína/metabolismo , Mutação , Proteínas de Transporte Vesicular , Domínios de Homologia de src/genética , Domínios de Homologia de src/fisiologia
5.
EMBO Rep ; 6(3): 245-50, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723044

RESUMO

The farnesylated SNARE (N-ethylmaleimide-sensitive factor attachment protein receptor) Ykt6 mediates protein palmitoylation at the yeast vacuole by means of its amino-terminal longin domain. Ykt6 is localized equally to membranes and the cytosol, although it is unclear how this distribution is mediated. We now show that Ykt6 is released efficiently from vacuoles during an early stage of yeast vacuole fusion. This release is dependent on the disassembly of vacuolar SNAREs (priming). In recent literature, it had been demonstrated for mammalian Ykt6 that the membrane-bound form is both palmitoylated and farnesylated at its carboxy-terminal CAAX box, whereas soluble Ykt6 is only farnesylated. In agreement with this, we find that yeast Ykt6 becomes palmitoylated in vitro at its C-terminal CAAX motif. Mutagenesis of the potential palmitoylation site in yeast Ykt6 prevents stable membrane association and is lethal. On the basis of these and other findings, we speculate that Ykt6 is released from membranes by depalmitoylation. Such a mechanism could enable recycling of this lipid-anchored SNARE from the vacuole independent of retrograde transport.


Assuntos
Fusão de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Mutação/genética , Ácido Palmítico/metabolismo , Estrutura Terciária de Proteína , Proteínas R-SNARE , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Tempo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 102(48): 17366-71, 2005 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-16301533

RESUMO

Vacuole biogenesis depends on specific targeting and retention of peripheral membrane proteins. At least three palmitoylated proteins are found exclusively on yeast vacuoles: the fusion factor Vac8, the kinase Yck3, and a novel adaptor protein implicated in microautophagy, Meh1. Here, we analyze the role that putative acyltransferases of the DHHC family play in their localization and function. We find that Pfa3/Ynl326c is required for efficient localization of Vac8 to vacuoles in vivo, while Yck3 or Meh1 localization is not impaired in any of the seven DHHC deletions. Vacuole-associated Vac8 appears to be palmitoylated in a pfa3 mutant, but this population is refractive to further palmitoylation on isolated vacuoles. Vacuole morphology and inheritance, which both depend on Vac8 palmitoylation, appear normal, although there is a reduction in vacuole fusion. Interestingly, Pfa3 is required for the vacuolar localization of not only an SH4 domain that is targeted by myristate/palmitate (as in Vac8) but also one that is targeted by a myristate/basic stretch (as in Src). Our data indicate that Pfa3 has an important but not exclusive function for Vac8 localization to the vacuole.


Assuntos
Aciltransferases/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Palmitoil Coenzima A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Biotinilação , Caseína Quinase I/metabolismo , Proteínas de Fluorescência Verde , Lipoproteínas/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Mutação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
7.
J Biol Chem ; 280(15): 15348-55, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15701652

RESUMO

Yeast vacuole fusion requires palmitoylated Vac8. We previously showed that Vac8 acylation occurs early in the fusion reaction, is blocked by antibodies against Sec18 (yeast N-ethylmaleimide-sensitive fusion protein (NSF)), and is mediated by the R-SNARE Ykt6. Here we analyzed the regulation of this reaction on purified vacuoles. We show that Vac8 acylation is restricted to a narrow time window, is independent of ATP hydrolysis by Sec18, and is stimulated by the ion chelator EDTA. Analysis of vacuole protein complexes indicated that Ykt6 is part of a complex distinct from the second R-SNARE, Nyv1. We speculate that during vacuole fusion, Nyv1 is the classical R-SNARE, whereas the Ykt6-containing complex has a novel function in Vac8 palmitoylation.


Assuntos
Trifosfato de Adenosina/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Relação Dose-Resposta a Droga , Ácido Edético/química , Eletroforese em Gel de Poliacrilamida , Genótipo , Glutationa Transferase/metabolismo , Hidrólise , Imunoprecipitação , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Microscopia de Contraste de Fase , Modelos Biológicos , Ácido Palmítico/metabolismo , Ligação Proteica , Proteínas R-SNARE , Proteínas Recombinantes/química , Proteínas SNARE , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Tempo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA