Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63642, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711237

RESUMO

The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.

2.
Brain Behav Immun ; 63: 137-147, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27702682

RESUMO

Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a gender-specific HPA axis enhanced activation.


Assuntos
Transtorno Depressivo/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Comportamento Animal/fisiologia , Biomarcadores/sangue , Encéfalo , Corticosterona/sangue , Depressão/genética , Depressão/imunologia , Transtorno Depressivo/genética , Feminino , Hipocampo/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Inflamação , Camundongos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Gravidez , Fatores Sexuais
3.
BMC Cell Biol ; 12: 12, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21450070

RESUMO

BACKGROUND: In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. RESULTS: Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2) versus hypoxia (5% O2) for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold) inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1) were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold) involved in extracellular matrix assembly (SMOC2), neural and muscle development (NOG, GPR56, SNTG2, LAMA) and epithelial development (DMKN). This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". CONCLUSION: The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.


Assuntos
Diferenciação Celular , Hipóxia Celular , Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Contagem de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica , Células-Tronco Multipotentes/metabolismo , Pesquisa com Células-Tronco
4.
Am J Med Genet A ; 149A(11): 2493-500, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19842196

RESUMO

Monosomy 1p36 is the most frequent terminal deletion known in Humans. Typical craniofacial features, developmental delay/mental retardation, seizures and sensorineural defects characterize 1p36 deletion syndrome. Aicardi syndrome (AIS) is a rare genetic disorder characterized by chorioretinal lacunae, corpus callosum agenesis and infantile spasms responsible for mental retardation. By screening DNA from diagnosed AIS patients with oligonucleotide array-based comparative genomic hybridization (aCGH), we report a 1p36 monosomy in this study. There were no other deletions or duplications. Regarding clinical criteria, the patient did not have the typical facial appearance commonly described for 1p36 monosomy patients. We showed that this 1p36 monosomy corresponded to combined interstitial and terminal de novo deletions of the chromosome 1 leading to an 11.73 Mb deletion confirmed with qPCR. By microsatellite markers and FISH analyses, we have concluded that this deletion occurred on maternal chromosome 1 during oogenesis. We did find some clinical features shared by the 1p36 monosomy and AIS: infantile spasms, corpus callosum dysgenesis, ophthalmological abnormalities, and skeletal malformations. To date, no relationship between these two phenotypes has been established. We conclude that the monosomy 1p36 should be considered in the differential diagnosis of AIS.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 1/genética , Monossomia/genética , Adulto , Criança , Deleção Cromossômica , Feminino , Rearranjo Gênico/genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Pais , Fenótipo , Reação em Cadeia da Polimerase , Síndrome
5.
Mol Neurobiol ; 56(2): 892-906, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29804229

RESUMO

Gestational methyl donor (especially B9 and B12 vitamins) deficiency is involved in birth defects and brain development retardation. The underlying molecular mechanisms that are dysregulated still remain poorly understood, in particular in the cerebellum. As evidenced from previous data, females are more affected than males. In this study, we therefore took advantage of a validated rat nutritional model and performed a microarray analysis on female progeny cerebellum, in order to identify which genes and molecular pathways were disrupted in response to methyl donor deficiency. We found that cerebellum development is altered in female pups, with a decrease of the granular cell layer thickness at postnatal day 21. Furthermore, we investigated the involvement of the Wnt signaling pathway, a major molecular pathway involved in neuronal development and later on in synaptic assembly and neurotransmission processes. We found that Wnt canonical pathway was disrupted following early methyl donor deficiency and that neuronal targets were selectively enriched in the downregulated genes. These results could explain the structural brain defects previously observed and highlighted new genes and a new molecular pathway affected by nutritional methyl donor deprivation.


Assuntos
Encéfalo/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Via de Sinalização Wnt/fisiologia , Animais , Células Cultivadas , Feminino , Ratos Wistar , Fatores Sexuais
6.
Eur J Med Genet ; 50(5): 386-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17625997

RESUMO

Aicardi syndrome (AIC) is an uncommon neurodevelopmental disorder affecting almost exclusively females. Chief features include infantile spasms, corpus callosal agenesis, and chorioretinal abnormalities. AIC is a sporadic disorder and hypothesized to be caused by heterozygous mutations in an X-linked gene but up to now without any defined candidate region on the X chromosome. Array based comparative genomic hybridisation (array-CGH) has become the method of choice for the detection of microdeletions and microduplications at high resolution. In this study, for the first time, 18 AIC patients were analyzed with a full coverage X chromosomal BAC arrays at a theoretical resolution of 82 kb. Copy number changes were validated by real-time quantitation (qPCR). No disease associated aberrations were identified. For such conditions as AIC, in which there are no familial cases, additional patients should be studied in order to identify rare cases with submicroscopic abnormalities, and to pursue a positional candidate gene approach.


Assuntos
Anormalidades Múltiplas/genética , Agenesia do Corpo Caloso , Corioide/anormalidades , Cromossomos Humanos X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Retina/anormalidades , Espasmos Infantis/genética , Adolescente , Adulto , Sequência de Bases , Criança , Proteínas Contráteis/genética , Primers do DNA/genética , Deficiências do Desenvolvimento/genética , Feminino , Filaminas , Dosagem de Genes , Humanos , Lactente , Proteínas dos Microfilamentos/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Síndrome
7.
Biochim Biophys Acta ; 1731(1): 23-31, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16153720

RESUMO

The gec1/GABARAPL1 (GABA(A)-receptor-associated protein like-1) gene has been identified as an early estrogen-regulated gene in guinea-pig cultured endometrial glandular epithelial cells (GEC). Guinea-pig and human gec1/GABARAPL1 proteins share 87% identity with GABARAP, which acts as a protein linker between microtubules and the GABA(A) receptor. To investigate the molecular mechanisms regulating gec1/GABARAPL1 gene expression, the 1.5-kbp region upstream of the translation initiation codon of the guinea-pig gec1/GABARAPL1 gene was cloned. A 300-bp fragment encompassing a pyrimidine-rich initiator element (INR) and the transcription start site (+1) was sufficient to initiate transcription. Transfection and gel shift experiments showed that a sequence located at +36/+50 in the first exon permitted induction of expression of this gene by estradiol acting via ERalpha. This sequence (GGGTCAACGTGACGT) differs only by one base pair from the consensus estrogen response element ERE (GGGTCAACGTGACCT). It can be concluded that the ERE located in the first exon encoding the 5'-untranslated region is sufficient for E2 activation of gec1/GABARAPL1 transcription.


Assuntos
Estrogênios/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Células CHO , Cricetinae , Estradiol/farmacologia , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/metabolismo , Éxons , Feminino , Regulação da Expressão Gênica , Cobaias , Proteínas Associadas aos Microtúbulos/biossíntese , Dados de Sequência Molecular , Sítio de Iniciação de Transcrição
8.
Toxicol Lett ; 245: 7-14, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26724586

RESUMO

The developing central nervous system is particularly vulnerable to environmental contaminants such as non-dioxin-like polychlorinated biphenyls (NDL-PCBs). This study investigated the potential oxidative effects in mice pups exposed via lactation to the sum of the six indicator NDL-PCBs (∑6 NDL-PCBs) at 0, 1, 10 and 100 ng/kg per 14 days, constituting levels below the guidance values fixed by French food safety agencies for humans at 10 ng/kg body weight per day. For this purpose, the oxidative status was assessed by flow cytometry via dichloro-dihydro-fluorescein diacetate in the cerebellum of juvenile male offspring mice during brain growth spurt [postnatal day (PND) 14]. No significant differences were found in the levels of reactive oxygen species in the cerebellar neurons or glial cells (astrocytes, oligodendrocytes and microglia) of lactationally exposed male mice at PND 14 (p>0.05). Concordantly, oxidative-stress related gene expression was measured by qPCR for catalase, copper zinc superoxide dismutase 1, glyoxalase 1, glutathione peroxidase 1, and glutathione reductase 1, in the cerebellum at PND 14 appeared unaffected, as also verified at the protein level by immunoblots. Moreover, transcriptomic data from our previous work have not shown differences in the mRNA expressions of genes belonging to GO terms involved in oxidative stress in neurons of male mice exposed to ∑6 NDL-PCBs compared to controls; except for glyoxalase 1 which was downregulated in neurons isolated from exposed group compared to controls. Our findings suggest that lactational exposure to NDL-PCBs at environmental relevant concentrations may not cause significant oxidative effect on juvenile cerebellum.


Assuntos
Cerebelo/efeitos dos fármacos , Lactação , Estresse Oxidativo/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Antioxidantes/metabolismo , Encéfalo/crescimento & desenvolvimento , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Feminino , Inocuidade dos Alimentos , Masculino , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo , Bifenilos Policlorados/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
9.
Toxicology ; 328: 57-65, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25510870

RESUMO

Previously, we evaluated the effects of lactational exposure to a representative mixture of the six indicator non-dioxin-like polychlorinated biphenyls (∑6 NDL-PCBs) at low levels on the neurobiological changes and developmental/behavioral performances in mice. In this study, we analyzed the global gene expression profile in cerebellar neurons isolated from male mice presenting the most significant induction of anxiety-like behavior in our previous study (10 ng/kg ∑6 NDL-PCBs). Our results revealed changes in the expression of 16658 genes in the neurons of the exposed mice. Among these, 693 upregulated [fold change (FC)>2; p<0.05] and 665 downregulated (FC<2; p<0.05) genes were statistically linked to gene ontology terms (GO). Overexpressed genes belonged to GO terms involved with the cell cycle, DNA replication, cell cycle checkpoint, response to DNA damage stimulus, regulation of RNA biosynthetic processes, and microtubule cytoskeleton organization. Downregulated genes belonged to terms involved with the transmission of nerve impulses, projection neurons, synapse hands, cell junctions, and regulation of RNA biosynthetic processes. Using qPCR, we quantified gene expression related to DNA damage and validated the transcriptomic study, as a significant overexpression of Atm-Atr Bard1, Brca2, Fancd2, Figf, Mycn, p53 and Rad51 was observed between groups (p<0.001). Finally, using immunoblots we determined the expression level of six selected proteins. We found that changes in the protein expression of Atm Brca1, p53, Kcnma1, Npy4r and Scn1a was significant between exposed and control groups (p<0.05), indicating that the expression pattern of these proteins agreed with the expression pattern of their genes by qPCR, further validating our transcriptomic findings. In conclusion, our study showed that early life exposure of male mice to a low level of ∑6 NDL-PCBs induced p53-dependent responses to cellular stress and a decrease in the expression of proteins involved in the generation, conduction, and transmission of electrical signals in neurons.


Assuntos
Cerebelo/efeitos dos fármacos , Dano ao DNA , Lactação , Exposição Materna/efeitos adversos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Fatores Etários , Animais , Western Blotting , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Marcadores Genéticos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
10.
Brain Res Mol Brain Res ; 119(2): 216-9, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14625090

RESUMO

GABARAP and gec1/GABARAPL1 genes encode very similar proteins belonging to a new microtubule-associated protein (MAP) family. These proteins could participate in a complex clustering, targeting and/or degrading the GABA(A) receptors on post-synaptic membrane of neurons. Using specific cDNA probes, we investigated the differential expression of both genes in 76 human tissues. Against all odds, gec1/GABARAPL1 was more expressed than GABARAP in the central nervous system (CNS), while GABARAP was more expressed in endocrine glands.


Assuntos
Sistema Nervoso Central/metabolismo , Glândulas Endócrinas/metabolismo , Expressão Gênica/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Membrana Celular/metabolismo , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 17/genética , Feto , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Agregação de Receptores/genética , Receptores de GABA-A/metabolismo , Transmissão Sináptica/genética
11.
Leuk Lymphoma ; 54(3): 587-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22860893

RESUMO

Interleukin (IL)-24 has death-promoting effects on various proliferating cells including B-cells from chronic lymphocytic leukemia (CLL) and germinal center B-cells, but its molecular mechanisms are poorly understood. Using a B-cell differentiation model and mRNA profiling, we found that recombinant (r)IL-24 stimulated genes of the mitochondrial apoptotic pathway (Bax, Bid, Casp8, COX6C, COX7B) after 36 h, whereas the transcription of genes involved in DNA replication and metabolism was inhibited within 6 h. Unexpectedly, insulin-like growth factor 1 (IGF1), a hormone known to promote cell growth, was stimulated by IL-24. Activated B-cells express receptor for IGF1, to which they become sensitized and undergo apoptosis, a mechanism similar in this respect to IL-24-induced cell death. Furthermore, inhibition of the IGF1 pathway reversed the effects of IL-24. IL-24-mediated apoptosis was also antagonized by pifithrin-alpha, an inhibitor of p53 transactivation. Altogether, these results disclose sequential molecular signals generated by IL-24 in activated B-cells.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Interleucinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Western Blotting , Caspase 8/genética , Caspase 8/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Criança , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
12.
Eur J Hum Genet ; 20(12): 1216-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22739344

RESUMO

The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (-4 to-6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype.


Assuntos
Cromossomos Humanos Par 14/genética , Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Elementos Silenciadores Transcricionais/genética , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Linhagem Celular , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Discinesias/diagnóstico , Discinesias/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Mapeamento Físico do Cromossomo , Mutação Puntual , Proteína Quinase C/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Síndrome , Transcrição Gênica
13.
PLoS One ; 4(9): e7077, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19771162

RESUMO

BACKGROUND: The human PAF (hPAF) complex is part of the RNA polymerase II transcription apparatus and regulates multiple steps in gene expression. Further, the yeast homolog of hPaf1 has a role in regulating the expression of a subset of genes involved in the cell-cycle. We therefore investigated the role of hPaf1 during progression of the cell-cycle. METHODOLOGY/FINDINGS: Herein, we report that the expression of hPaf1, a subunit of the hPAF complex, increases with cell-cycle progression and is regulated in a cell-cycle dependant manner. hPaf1 specifically regulates a subclass of genes directly implicated in cell-cycle progression during G1/S, S/G2, and G2/M. In prophase, hPaf1 aligns in filament-like structures, whereas in metaphase it is present within the pole forming a crown-like structure, surrounding the centrosomes. Moreover, hPaf1 is degraded during the metaphase to anaphase transition. In the nucleus, hPaf1 regulates the expression of cyclins A1, A2, D1, E1, B1, and Cdk1. In addition, expression of hPaf1 delays DNA replication but favors the G2/M transition, in part through microtubule assembly and mitotic spindle formation. CONCLUSION/SIGNIFICANCE: Our results identify hPaf1 and the hPAF complex as key regulators of cell-cycle progression. Mutation or loss of stoichiometry of at least one of the members may potentially lead to cancer development.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Anáfase , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Progressão da Doença , Humanos , Metáfase , Microtúbulos/metabolismo , Modelos Biológicos , Fuso Acromático , Fatores de Transcrição , Transcrição Gênica
14.
Exp Cell Res ; 296(2): 109-22, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15149842

RESUMO

In normal endometrial glandular epithelial cells (GEC), 17beta-estradiol (E2) enhances proliferation and c-fos expression only in the presence of growth factors. On the contrary, growth factors are not required for the E2 effects in cancerous cells. Thus, a repression of E2 action could exist in normal cells and be turned off in cancerous cells, allowing a direct estrogen-dependent proliferation. To verify this hypothesis, we established immortalized and transformed cell models, then investigated alterations of E2 effects during oncogenesis. SV40 large T-antigen was used to generate immortalized GEC model (IGEC). After observation of telomerase reactivation, IGEC model was transfected by activated c-Ha-ras to obtain transformed cell lines (TGEC1 and TGEC2). The phenotypic, morphological, and genetic characteristics of these models were determined before studying the E2 effects. In IGEC, the E2 action on proliferation and c-fos expression required the presence of growth factors, as observed in GECs. In TGECs, this action arose in the absence of growth factors. After IGEC transformation, the activation of ras pathway would substitute the priming events required for the release of repression in GEC and IGEC and thus permit direct E2 effects. Our cell models are particularly suitable to investigate alterations of gene regulation by E2 during oncogenesis.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Antígenos Virais de Tumores , Divisão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Células Epiteliais/patologia , Feminino , Genes ras , Cobaias , Proteínas Proto-Oncogênicas c-fos/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA