Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2304110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806756

RESUMO

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Células Endoteliais , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , Aterosclerose/diagnóstico por imagem
2.
Plant Cell Rep ; 43(6): 150, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789593

RESUMO

KEY MESSAGE: Lilium tsingtauense mitogenome comprises 27 independent chromosome molecules, it undergoes frequent genomic recombination, and the rate of recombination and mutation between different repetitive sequences affects the formation of multichromosomal structures. Given the extremely large genome of Lily, which likely harbors additional genetic resources, it serves as an ideal material for studying the phylogenetic evolution of organisms. Although the Lilium chloroplast genome has been documented, the sequence of its mitochondrial genome (mitogenome) remains uncharted. Using BGI short reads and Nanopore long reads, we sequenced, assembled, and annotated the mitogenome of Lilium tsingtauense. This effort culminated in the characterization of Lilium's first complete mitogenome. Comparative analysis with other angiosperms revealed the unique multichromosomal structure of the L. tsingtauense mitogenome, spanning 1,125,108 bp and comprising 27 independent circular chromosomes. It contains 36 protein-coding genes, 12 tRNA genes, and 3 rRNA genes, with a GC content of 44.90%. Notably, three chromosomes in the L. tsingtauense mitogenome lack identifiable genes, hinting at the potential existence of novel genes and noncoding elements. The high degree of observed genome fragmentation implies frequent reorganization, with recombination and mutation rates among diverse repetitive sequences likely driving the formation of multichromosomal structures. Our comprehensive analysis, covering genome size, coding genes, structure, RNA editing, repetitive sequences, and sequence migration, sheds light on the evolutionary and molecular biology of multichromosomal mitochondria in Lilium. This high-quality mitogenome of L. tsingtauense not only enriches our understanding of multichromosomal mitogenomes but also establishes a solid foundation for future genome breeding and germplasm innovation in Lilium.


Assuntos
Cromossomos de Plantas , Genoma Mitocondrial , Lilium , Filogenia , Genoma Mitocondrial/genética , Lilium/genética , Cromossomos de Plantas/genética , RNA de Transferência/genética , Genoma de Planta/genética , Composição de Bases/genética
3.
Nano Lett ; 23(20): 9399-9405, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877237

RESUMO

An accurate rule for predicting conductance is the cornerstone of developing molecular circuits and provides a promising solution for miniaturizing electric circuits. The successful prediction of series molecular circuits has proven the possibility of establishing a rule for molecular circuits under quantum mechanics. However, the quantitatively accurate prediction has not been validated by experiments for parallel molecular circuits. Here we used 1,3-dihydrobenzothiophene (DBT) to build the parallel molecular circuits. The theoretical simulation and single-molecule conductance measurements demonstrated that the conductance of the molecule containing one DBT is the unprecedented linear combination of the conductance of the two individual channels with respective contribution weights of 0.37 and 0.63. With these weights, the conductance of the molecule containing two DBTs is predicted as 1.81 nS, matching perfectly with the measured conductance (1.82 nS). This feature offers a potential rule for quantitatively predicting the conductance of parallel molecular circuits.

4.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608044

RESUMO

Ferroptosis, as a promising therapeutic strategy for cancers, has aroused great interest. Quantifying the quick dynamic changes in key parameters during the early course of ferroptosis can provide insights for understanding the underlying mechanisms of ferroptosis and help the development of therapies targeting ferroptosis. However, in situ and quantitatively monitoring the quick responses of living cancer cells to ferroptosis at the single-cell level remains technically challenging. In this work, we selected HuH7 cells (hepatocellular carcinoma (HCC) cells) as a cell model and Erastin as a typical ferroptosis inducer. We utilized scanning electrochemical microscopy (SECM) to quantitatively and in situ monitor the early course of ferroptosis in HuH7 cells by characterizing the three key parameters of cell ferroptosis (i.e., cell membrane permeability, respiratory activity, and the redox state). The SECM results show that the membrane permeability of ferroptotic HuH7 cells continuously increased from 0 to 8.1 × 10-5 m s-1, the cellular oxygen consumption was continuously reduced by half, and H2O2 released from the cells exhibited periodic bursts during the early course of ferroptosis, indicating the gradually destroyed cell membrane structure and intensified oxidative stress. Our work realizes, for the first time, the in situ and quantitative monitoring of the cell membrane permeability, respiratory activity, and H2O2 level of the early ferroptosis process of a single living cancer cell with SECM, which can contribute to the understanding of the physiological process and underlying mechanisms of ferroptosis.

5.
Opt Express ; 31(2): 1330-1339, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785170

RESUMO

Airy beams, accelerating optical beams with exotic properties of self-bending, self-healing and non-diffraction, are essential for a wide range of photonics applications. Recently, metasurfaces have provided an efficient platform for generating desired Airy beams within a thin thickness, but they suffer from the narrow bandwidth, especially for two-dimensional (2D) Airy beams. Here, we propose an amplitude-tailorable polarization-converting metasurface to enable ultra-wideband 2D Airy beam generation. The amplitude and phase profiles for the 2D Airy beam can be realized by tuning only the orientation of the multi-resonant meta-atom, which can operate in the range of 6.6 GHz to 23.7 GHz, or fractional bandwidth of 113%. An exemplary prototype is measured to validate the design principle, which is in agreement with the simulation results. The proposed method holds great promise for wavefront shaping, and may facilitate the uses of Airy beam for practical applications.

6.
Opt Express ; 31(25): 41658-41668, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087559

RESUMO

A high-efficiency transmitted polarization converter based on a frequency selective surface (FSS) is proposed in this paper. The FSS-based polarization converter (FSS-PC) is designed based on receiving-via-transmitting (RVT) structure. The receiving and transmitting antenna structures are interconnected by the transmission line, designed in the form of metallized via holes. For any linearly polarized (LP) electromagnetic wave, our proposed FSS-PC has the capability to convert it into another LP electromagnetic wave. This converted wave will have a counterclockwise rotation angle of 2φ relative to the incident wave at 11 GHz. This is achieved by adjusting the relative azimuth φ between the polarization plane of the incident LP wave's electric field and the converter. Meanwhile, the FSS-PC can achieve exceptionally high polarization conversion above -0.30 dB at the central frequency of 11 GHz. Furthermore, as the azimuth of the incident electric field varies, this high-efficiency polarization conversion capability remains stable. The prototype has been fabricated and measured, and the measured results agree well with the simulated ones, thus confirming the effectiveness of the proposed design.

7.
Opt Express ; 31(18): 28979-28986, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710706

RESUMO

Recently, reconfigurable polarization-manipulation metasurfaces controlled with active components have gained widespread interest due to their adaptability, compact configuration, and low cost. However, due to the inherent non-negligible ohmic loss, the output energy of these tunable metasurfaces is typically diminished, particularly in the microwave region. To surmount the loss problem, herein, we propose an active polarization-converting metasurface with non-reciprocal polarization responses that is integrated with amplifying transistors. In addition, we provide a design strategy for a polarizer that is insensitive to polarization and has energy amplification capabilities. Experiments are conducted in the microwave region, and amplification of the polarization-converting behaviors is observed around 3.95 GHz. The proposed metasurface is prospective for applications in future wireless communication systems, such as spatial isolation, signal enhancement, and electromagnetic environment shaping.

8.
J Nanobiotechnology ; 21(1): 472, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066538

RESUMO

Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE-/- mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Trealose/farmacologia , Trealose/metabolismo , Nanogéis , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Autofagia , Lipídeos
9.
J Nanobiotechnology ; 21(1): 307, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644442

RESUMO

A disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.g. methotrexate, MTX) to effectively regulate progression of disease may be related to the limited drug bioavailability and rapid clearance by immune system. Thus, based on the inflammatory lesion "recruitment" properties of macrophages, MTX nanoparticles (MTX NPs) camouflaged with macrophage membranes (MM@MTX NPs) were constructed for the target to AS plaques. MM@MTX NPs exhibited a uniform hydrodynamic size around ~ 360 nm and controlled drug release properties (~ 72% at 12 h). After the macrophage membranes (MM) functionalized "homing" target delivery to AS plaques, MM@MTX NPs improved the solubility of cholesterol by the functionalized ß-cyclodextrin (ß-CD) component and significantly elevate cholesterol efflux by the loaded MTX mediated the increased expression levels of ABCA1, SR-B1, CYP27A1, resulting in efficiently inhibiting the formation of foam cells. Furthermore, MM@MTX NPs could significantly reduce the area of plaque, aortic plaque and cholesterol crystals deposition in ApoE-/- mice and exhibited biocompatibility. It is suggested that MM@MTX NPs were a safe and efficient therapeutic platform for AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Células Espumosas , Biomimética , Aterosclerose/tratamento farmacológico , Transporte Biológico
10.
Ren Fail ; 45(1): 2163505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636998

RESUMO

PURPOSE: The risk of thromboembolic events is elevated in patients with nephrotic syndrome, and warfarin use has been associated with an increased risk of bleeding. Indobufen, a selective cyclooxygenase-1 inhibitor, is currently being evaluated for the prevention of thromboembolic events in nephrotic syndrome. This study aimed to compare the efficacy and safety of indobufen with that of warfarin in patients with nephrotic syndrome. MATERIALS AND METHODS: This multicenter, randomized, three-arm, open-label, parallel controlled trial involved a total of 180 adult patients with nephrotic syndrome from four centers in China. Patients were randomly assigned to receive 100 mg indobufen (bid), 200 mg indobufen (bid), and 3 mg warfarin (qd) daily for 12 weeks. The primary endpoints included thromboembolic and bleeding events, while laboratory results and adverse events constituted secondary endpoints. RESULTS: No thromboembolic events occurred in the high-/low-dose indobufen and warfarin groups. Moreover, the use of a low dose of indobufen significantly reduced the risk of minor bleeding events compared with warfarin use (2% versus 18%, p < .05). Finally, adverse events were more frequent in warfarin-treated patients. CONCLUSIONS: This study found that indobufen therapy provided equivalent effects in preventing thromboembolic events compared with warfarin therapy, while low dose of indobufen was associated with a reduced risk of bleeding events, thus it should be recommended for the prevention of thromboembolic events in clinical practice in patients with nephrotic syndrome. TRIAL REGISTRATION NUMBER: ChiCTR-IPR-17013428.


Assuntos
Fibrilação Atrial , Síndrome Nefrótica , Tromboembolia , Adulto , Humanos , Varfarina/efeitos adversos , Fibrinolíticos/uso terapêutico , Síndrome Nefrótica/complicações , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/induzido quimicamente , Anticoagulantes , Tromboembolia/prevenção & controle , Tromboembolia/induzido quimicamente , Hemorragia/induzido quimicamente , Hemorragia/complicações , Resultado do Tratamento
11.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139111

RESUMO

It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.


Assuntos
Proteínas Quinases Ativadas por AMP , Calpaína , Calpaína/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Proteólise , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
12.
Angew Chem Int Ed Engl ; 62(43): e202310945, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37670427

RESUMO

Vanadium flow battery (VFB) is one of the most reliable stationary electrochemical energy-storage technologies, and a membrane with high vanadium resistance and proton conductivity is essential for manufacturing high-performance VFBs. In this study, a two-dimensional (2D) MFI-type zeolite membrane was fabricated from zeolite nanosheet modules, which displayed excellent vanadium resistance (0.07 mmol L-1 h-1 ) and proton conductivity (0.16 S cm-1 ), yielding a coulombic efficiency of 93.9 %, a voltage efficiency of 87.6 %, and an energy efficiency of 82.3 % at 40 mA cm-2 . The self-discharge period of a VFB equipped with 2D MFI-type zeolite membrane increased up to 116.2 h, which was significantly longer than that of the commercial perfluorinated sulfonate membrane (45.9 h). Furthermore, the corresponding battery performance remained stable over 1000 cycles (>1500 h) at 80 mA cm-2 . These findings demonstrate that 2D MFI-type membranes are promising ion-conductive membranes applicable for stationary electrochemical energy-storage devices.

13.
Angew Chem Int Ed Engl ; 62(50): e202313571, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885408

RESUMO

Covalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self-standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular-mediated crystallization strategy is designed to manipulate the crystallization of self-standing COF membrane, where the -SO3 H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long-range ordered template for membrane crystallization. The optimized self-standing COF membrane composed of highly-ordered nanopores exhibits high proton conductivity (75 mS cm-1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long-term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self-standing COF membranes with ordered channels for permselective application.

14.
Small ; 18(20): e2200361, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481610

RESUMO

Investigating the correlations of electron transport between multiple channels shows vital promises for the design of molecule-scale circuits with logic operations. To control the electron transport through multiple channels, the modulation of electronegativity shows an effective frontier orbit control method with high universality to explore the interactions between transport channels. Here, two series of compounds with a single nitrogenous conductive channel (Sg) and dual-channels (Db) are designed to explore the influence of electronegativity on electron tunneling transport. Single-molecule conductance measured via the scanning tunneling microscope break junction technique (STM-BJ) reveals that the conductance of Db series is significantly suppressed as the electronegativity of nitrogen becomes negative, while the suppression on Sg is less obvious. Theoretical calculations confirm that the effect of electronegativity extends to a dispersive range of molecular frameworks owing to the delocalized orbital distribution from the dual-channel structure, resulting in a more significant conductance suppression effect than that on the single-channel. This study provides the experimental and theoretical potentials of electronegativity gating for molecular circuits.


Assuntos
Nanotecnologia , Nitrogênio , Condutividade Elétrica , Transporte de Elétrons
15.
Ann Surg Oncol ; 29(12): 7619-7630, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35849293

RESUMO

BACKGROUND: This study aimed to comprehensively investigate the clinicopathologic characteristics and therapeutic situations of gallbladder neuroendocrine neoplasms (GB-NENs) in the real world via a multicenter, large-scale cohort study. METHODS: The study searched for patients in 143 hospitals in China and enrolled 154 patients with GB-NENs diagnosed in 40 hospitals between 2004 and 2021. Clinicopathologic characteristics and therapeutic approaches were analyzed retrospectively. RESULTS: The median age at the initial diagnosis of the patients with GB-NENs was 63 years (range 33-83 years), and 61.7% of the patients were women. Tumor-node-metastasis staging classified 92 patients as stage 3 or above. Based on the 2019 World Health Organization classification, 96 cases (62.3%) were confirmed pathologically as poorly differentiated neuroendocrine carcinomas, 13 cases (8.4%) as well-differentiated neuroendocrine tumors, and 45 cases as mixed neuroendocrine-non-neuroendocrine neoplasms. The liver was the most frequent metastatic site. Immunohistochemistry showed that synaptophysin was most frequently positive (80.4%), followed by chromogranin A (61.7%), and CD56 (58.4%). Computed tomography and magnetic resonance imaging showed more common clear boundaries (25/39 cases) and invasive growth features (27 cases). None of these cases had an accurate diagnosis before surgery, with a misdiagnosis rate of 100%. Surgical resection is the main treatment, and platinum-based chemotherapeutic regimens were preferred as adjuvant therapies for patients with GB-NENs. The available survival data for 74 patients showed an overall survival rate of 59% at 1 year, 33% at 3 years, and 29% at 5 years. No significant difference was found between the patients treated with and those treated without adjuvant chemotherapy. CONCLUSIONS: Gallbladder neuroendocrine neoplasms have high malignancy and a poor prognosis. Importantly, this large-scale cohort study significantly improves our understanding of GB-NENs and will benefit the exploration of its mechanism and treatment modes. Further investigation is necessary to explore the management of this disease.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Vesícula Biliar , Neoplasias Gastrointestinais , Tumores Neuroendócrinos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Neuroendócrino/patologia , Cromogranina A , Estudos de Coortes , Feminino , Neoplasias da Vesícula Biliar/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/cirurgia , Prognóstico , Estudos Retrospectivos , Sinaptofisina
16.
Opt Express ; 30(19): 33613-33626, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242392

RESUMO

The independent tailoring of electromagnetic waves with different circular-polarized (CP) wavefront in both reflection and transmission channels is of broad scientific and technical interest, offering ultimate degrees of freedom in designing advanced devices with the merits of functionality integration and spatial exploitation. However, most metasurfaces only provide dependent wavefront control of dual-helicity in a single channel, restricting their applications to limited practical scenarios. Herein, we propose a full-space dual-helicity decoupled metasurface and apply it to assemble a multi-folded reflective antenna (MFRA) in the microwave regime. A multilayered chiral meta-atom is designed and optimized to reflect a particular helical wave while allowing the orthogonal helical wave to penetrate through, with simultaneous full span of phase modulations in both channels. When a uniform reflection and a hyperbolic transmission phase profile is imposed simultaneously on the metasurface in a polarization-selective manner, it can be engineered to conduct specular reflection for one helical wave and convergent transmission of the other helical wave. Combining the proposed metasurface with a metallic plate as a bottom reflector and an integrated microstrip patch antenna in the center of metasurface as a feed, a MFRA is realized with a low profile, high efficiency, and high polarization purity in a broad frequency band. The proposed design method of the dual-helicity decoupled metasurface and its antenna application provide opportunities for high-performance functional devices, promising more potential in future communication and detection systems.

17.
Pharmacol Res ; 178: 106191, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35346845

RESUMO

Metabolic inflammation is a crucial factor in the pathogenesis of obesity and promotes related complications. Accumulating evidence has indicated that regulating intestinal integrity and the gut microbiota may be new treatment strategies for metabolic inflammation and obesity. Cordycepin has been reported to improve obesity, but the mechanism is not yet clear. Here, we showed that cordycepin considerably alleviated systemic inflammation while reducing body weight gain and metabolic disorders in Western diet (WD)-fed mice. Further investigations showed that cordycepin significantly ameliorated WD-induced damage to the intestinal barrier and decreased the leakage of lipopolysaccharide (LPS) into the blood in mice by suppressing intestinal inflammation, oxidative stress damage, and decreasing intestinal epithelial cell apoptosis and pyroptosis. In addition, by using metagenomic sequencing, we found that cordycepin could also regulate the homeostasis of intestinal flora, including selectively increasing the abundance of Akkermansia muciniphila and reducing the production of fecal LPS. Besides, we demonstrated that the intestinal flora partially mediated the beneficial effects of cordycepin on improving intestinal barrier function, and obesity-related symptoms in WD-fed mice by a fecal microbiota transplantation experiment. Hence, our findings provided new insights into the role of cordycepin in improving metabolic inflammation and obesity from the perspective of regulating the intestinal barrier function and intestinal flora, and further provided data support for the utility of cordycepin in the treatment of obesity and its complications.


Assuntos
Microbioma Gastrointestinal , Animais , Desoxiadenosinas , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Inflamação/complicações , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
18.
Chem Eng J ; 433(Pt 2)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36505940

RESUMO

Emerging perfluoroalkyl and polyfluoroalkyl substances contaminate waters at trace concentrations, thus rapid and selective adsorbents are pivotal to mitigate the consequent energy-intensive and time-consuming issues in remediation. In this study, coal combustion residuals-fly ash was modified (FA-SCA) to overcome the universal trade-off between high adsorption capacity and fast kinetics. FA-SCA presented rapid adsorption (teq = 2 min) of PFOX (perfluorooctanoic acid and perfluorooctanesulfonic acid, collectively), where the dynamic adsorption capacity (qdyn = qm/teq) was 2-3 orders of magnitude higher than that of benchmark activated carbons and anion-exchange resins. Investigated by advanced characterization and kinetic models, the fast kinetics and superior qdyn are attributed to (1) elevated external diffusion driven by the submicron particle size; (2) enhanced intraparticle diffusion caused by the developed mesoporous structure (Vmeso/Vmicro = 8.1); (3) numerous quaternary ammonium anion-exchange sites (840 µmol/g), and (4) appropriate adsorption affinity (0.031 L/µmol for PFOS, and 0.023 L/µmol for PFOA). Since the adsorption was proven to be a synergistic process of electrostatic and hydrophobic interactions, effective adsorption ([PFOX]ini = 1.21 µM, concentration levels of highly-contaminant-sites) was obtained at conventional natural water chemistries. High selectivity (>85.4% removal) was also achieved with organic/inorganic competitors, especially compounds with partly similar molecular structures to PFOX. In addition, >90% PFOX was removed consistently during five cycles in mild regeneration conditions (pH 12 and 50 °C). Overall, FA-SCA showed no leaching issues of toxic metals and exhibits great potential in both single-adsorption processes and treatment train systems.

19.
BMC Biol ; 19(1): 118, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34130700

RESUMO

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Assuntos
Galinhas , Domesticação , Animais , Animais Domésticos/genética , Galinhas/genética , Genoma , Genômica , Humanos
20.
Nano Lett ; 21(22): 9729-9735, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761680

RESUMO

Unveiling the internal dynamics of rotation in molecular machine at single-molecule scale is still a challenge. In this work, three crank-shaped molecules are elaborately designed with the conformational flipping between syn and anti fulfilled by two naphthyl groups rotating freely along 1,3-butadiynyl axis. By investigating the single-molecule conductance using scanning tunnelling microscope break junction (STM-BJ) technique and theoretical simulation, the internal rotation of these crank-shaped molecules is well identified through low and high conductance corresponding to syn- and anti-conformations. As demonstrated by theoretically computational study, the orbital energy changes with the conformational flipping and influences the intraorbital quantum interference, thus eventually modulating the single-molecule conductance. This work demonstrates single-molecule conductance measurement to be a rational approach for characterizing the internal rotation of molecular machines.


Assuntos
Conformação Molecular , Nanotecnologia , Rotação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA