Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38877790

RESUMO

SCENTinel, a rapid smell test designed to screen for olfactory disorders, including anosmia (no ability to smell an odor) and parosmia (distorted sense of smell), measures 4 components of olfactory function: detection, intensity, identification, and pleasantness. Each test card contains one of 9 odorant mixtures. Some people born with genetic insensitivities to specific odorants (i.e. specific anosmia) may fail the test if they cannot smell an odorant but otherwise have a normal sense of smell. However, using odorant mixtures has largely been found to prevent this from happening. To better understand whether genetic differences affect SCENTinel test results, we asked genetically informative adult participants (twins or triplets, N = 630; singletons, N = 370) to complete the SCENTinel test. A subset of twins (n = 304) also provided a saliva sample for genotyping. We examined data for differences between the 9 possible SCENTinel odors; effects of age, sex, and race on SCENTinel performance, test-retest variability; and heritability using both structured equation modeling and SNP-based statistical methods. None of these strategies provided evidence for specific anosmia for any of the odors, but ratings of pleasantness were, in part, genetically determined (h2 = 0.40) and were nominally associated with alleles of odorant receptors (e.g. OR2T33 and OR1G1; P < 0.001). These results provide evidence that using odorant mixtures protected against effects of specific anosmia for ratings of intensity but that ratings of pleasantness showed effects of inheritance, possibly informed by olfactory receptor genotypes.


Assuntos
Odorantes , Olfato , Humanos , Feminino , Masculino , Adulto , Odorantes/análise , Olfato/fisiologia , Pessoa de Meia-Idade , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/genética , Adulto Jovem , Percepção Olfatória , Idoso , Genótipo , Anosmia/diagnóstico , Anosmia/genética
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796784

RESUMO

It is estimated that 20%-67% of those with COVID-19 develop olfactory disorders, depending on the SARS-CoV-2 variant. However, there is an absence of quick, population-wide olfactory tests to screen for olfactory disorders. The purpose of this study was to provide a proof-of-concept that SCENTinel 1.1, a rapid, inexpensive, population-wide olfactory test, can discriminate between anosmia (total smell loss), hyposmia (reduced sense of smell), parosmia (distorted odor perception), and phantosmia (odor sensation without a source). Participants were mailed a SCENTinel 1.1 test, which measures odor detection, intensity, identification, and pleasantness, using one of 4 possible odors. Those who completed the test (N = 287) were divided into groups based on their self-reported olfactory function: quantitative olfactory disorder only (anosmia or hyposmia, N = 135), qualitative olfactory disorder only (parosmia and/or phantosmia; N = 86), and normosmia (normal sense of smell; N = 66). SCENTinel 1.1 accurately discriminates quantitative olfactory disorders, qualitative olfactory disorders, and normosmia groups. When olfactory disorders were assessed individually, SCENTinel 1.1 discriminates between hyposmia, parosmia, and anosmia. Participants with parosmia rated common odors less pleasant than those without parosmia. We provide proof-of-concept that SCENTinel 1.1, a rapid smell test, can discriminate quantitative and qualitative olfactory disorders, and is the only direct test to rapidly discriminate parosmia.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , SARS-CoV-2 , Anosmia/diagnóstico , COVID-19/diagnóstico , Transtornos do Olfato/diagnóstico , Olfato
3.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100383

RESUMO

Chemosensory scientists have been skeptical that reports of COVID-19 taste loss are genuine, in part because before COVID-19 taste loss was rare and often confused with smell loss. Therefore, to establish the predicted prevalence rate of taste loss in COVID-19 patients, we conducted a systematic review and meta-analysis of 376 papers published in 2020-2021, with 235 meeting all inclusion criteria. Drawing on previous studies and guided by early meta-analyses, we explored how methodological differences (direct vs. self-report measures) may affect these estimates. We hypothesized that direct measures of taste are at least as sensitive as those obtained by self-report and that the preponderance of evidence confirms taste loss is a symptom of COVID-19. The meta-analysis showed that, among 138,015 COVID-19-positive patients, 36.62% reported taste dysfunction (95% confidence interval: 33.02%-40.39%), and the prevalence estimates were slightly but not significantly higher from studies using direct (n = 15) versus self-report (n = 220) methodologies (Q = 1.73, df = 1, P = 0.1889). Generally, males reported lower rates of taste loss than did females, and taste loss was highest among middle-aged adults. Thus, taste loss is likely a bona fide symptom of COVID-19, meriting further research into the most appropriate direct methods to measure it and its underlying mechanisms.


Assuntos
Ageusia , COVID-19 , Transtornos do Olfato , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Humanos , COVID-19/complicações , Ageusia/etiologia , Ageusia/epidemiologia , SARS-CoV-2 , Distúrbios do Paladar/diagnóstico , Distúrbios do Paladar/etiologia , Distúrbios do Paladar/epidemiologia , Olfato , Paladar
4.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469087

RESUMO

Many widely used psychophysical olfactory tests have limitations that can create barriers to adoption. For example, tests that measure the ability to identify odors may confound sensory performance with memory recall, verbal ability, and prior experience with the odor. Conversely, classic threshold-based tests avoid these issues, but are labor intensive. Additionally, many commercially available tests are slow and may require a trained administrator, making them impractical for use in situations where time is at a premium or self-administration is required. We tested the performance of the Adaptive Olfactory Measure of Threshold (ArOMa-T)-a novel odor detection threshold test that employs an adaptive Bayesian algorithm paired with a disposable odorant delivery card-in a non-clinical sample of individuals (n = 534) at the 2021 Twins Day Festival in Twinsburg, OH. Participants successfully completed the test in under 3 min with a false alarm rate of 7.5% and a test-retest reliability of 0.61. Odor detection thresholds differed by sex (~3.2-fold lower for females) and age (~8.7-fold lower for the youngest versus the oldest age group), consistent with prior studies. In an exploratory analysis, we failed to observe evidence of detection threshold differences between participants who reported a history of COVID-19 and matched controls who did not. We also found evidence for broad-sense heritability of odor detection thresholds. Together, this study suggests the ArOMa-T can determine odor detection thresholds. Additional validation studies are needed to confirm the value of ArOMa-T in clinical or field settings where rapid and portable assessment of olfactory function is needed.


Assuntos
COVID-19 , Transtornos do Olfato , Feminino , Humanos , Odorantes , Reprodutibilidade dos Testes , Teorema de Bayes , Limiar Sensorial , Olfato , Transtornos do Olfato/diagnóstico
5.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171979

RESUMO

Chemosensory scientists have been skeptical that reports of COVID-19 taste loss are genuine, in part because before COVID-19 taste loss was rare and often confused with smell loss. Therefore, to establish the predicted prevalence rate of taste loss in COVID-19 patients, we conducted a systematic review and meta-analysis of 376 papers published in 2020-2021, with 241 meeting all inclusion criteria. Drawing on previous studies and guided by early meta-analyses, we explored how methodological differences (direct vs. self-report measures) may affect these estimates. We hypothesized that direct measures of taste are at least as sensitive as those obtained by self-report and that the preponderance of evidence confirms taste loss is a symptom of COVID-19. The meta-analysis showed that, among 138,897 COVID-19-positive patients, 39.2% reported taste dysfunction (95% confidence interval: 35.34%-43.12%), and the prevalence estimates were slightly but not significantly higher from studies using direct (n = 18) versus self-report (n = 223) methodologies (Q = 0.57, df = 1, P = 0.45). Generally, males reported lower rates of taste loss than did females, and taste loss was highest among middle-aged adults. Thus, taste loss is likely a bona fide symptom of COVID-19, meriting further research into the most appropriate direct methods to measure it and its underlying mechanisms.


Assuntos
Ageusia , COVID-19 , Adulto , Ageusia/epidemiologia , Ageusia/virologia , COVID-19/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
6.
Food Qual Prefer ; 97: 104483, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34848930

RESUMO

In March 2020, the Global Consortium of Chemosensory Research (GCCR) was founded by chemosensory researchers to address emerging reports of unusual smell and taste dysfunction arising from the SARS-CoV-2 pandemic. Over the next year, the GCCR used a highly collaborative model, along with contemporary Open Science practices, to produce multiple high impact publications on chemosensation and COVID19. This invited manuscript describes the founding of the GCCR, the tools and approaches it used, and a summary of findings to date. These findings are contextualized within a summary of some of the broader insights about chemosensation (smell, taste, and chemesthesis) and COVID19 gained over the last 18 months, including potential mechanisms of loss. Also, it includes a detailed discussion of some current Open Science approaches and practices used by the GCCR to increase transparency, rigor, and reproducibility.

7.
Mamm Genome ; 32(2): 51-69, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713179

RESUMO

Mice of the C57BL/6ByJ (B6) strain have higher consumption of sucrose, and stronger peripheral neural responses to it, than do mice of the 129P3/J (129) strain. To identify quantitative trait loci (QTLs) responsible for this strain difference and to evaluate the contribution of peripheral taste responsiveness to individual differences in sucrose intake, we produced an intercross (F2) of 627 mice, measured their sucrose consumption in two-bottle choice tests, recorded the electrophysiological activity of the chorda tympani nerve elicited by sucrose in a subset of F2 mice, and genotyped the mice with DNA markers distributed in every mouse chromosome. We confirmed a sucrose consumption QTL (Scon2, or Sac) on mouse chromosome (Chr) 4, harboring the Tas1r3 gene, which encodes the sweet taste receptor subunit TAS1R3 and affects both behavioral and neural responses to sucrose. For sucrose consumption, we also detected five new main-effect QTLs, Scon6 (Chr2), Scon7 (Chr5), Scon8 (Chr8), Scon3 (Chr9), and Scon9 (Chr15), and an epistatically interacting QTL pair Scon4 (Chr1) and Scon3 (Chr9). No additional QTLs for the taste nerve responses to sucrose were detected besides Scon2 (Tas1r3) on Chr4. Identification of the causal genes and variants for these sucrose consumption QTLs may point to novel mechanisms beyond peripheral taste sensitivity that could be harnessed to control obesity and diabetes.


Assuntos
Comportamento Animal , Estudos de Associação Genética , Nervos Periféricos/fisiologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sacarose/metabolismo , Alelos , Animais , Mapeamento Cromossômico , Fenômenos Eletrofisiológicos , Camundongos , Especificidade da Espécie
8.
Mamm Genome ; 32(2): 70-93, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710367

RESUMO

We have previously used crosses between C57BL/6ByJ (B6) and 129P3/J (129) inbred strains to map a quantitative trait locus (QTL) on mouse chromosome (Chr) 4 that affects behavioral and neural responses to sucrose. We have named it the sucrose consumption QTL 2 (Scon2), and shown that it corresponds to the Tas1r3 gene, which encodes a sweet taste receptor subunit TAS1R3. To discover other sucrose consumption QTLs, we have intercrossed B6 inbred and 129.B6-Tas1r3 congenic mice to produce F2 hybrids, in which Scon2 (Tas1r3) does not segregate, and hence does not contribute to phenotypical variation. Chromosome mapping using this F2 intercross identified two main-effect QTLs, Scon3 (Chr9) and Scon10 (Chr14), and an epistatically interacting QTL pair Scon3 (Chr9)-Scon4 (Chr1). Using serial backcrosses, congenic and consomic strains, we conducted high-resolution mapping of Scon3 and Scon4 and analyzed their epistatic interactions. We used mice with different Scon3 or Scon4 genotypes to understand whether these two QTLs influence sucrose intake via gustatory or postoral mechanisms. These studies found no evidence for involvement of the taste mechanisms, but suggested involvement of energy metabolism. Mice with the B6 Scon4 genotype drank less sucrose in two-bottle tests, and also had a higher respiratory exchange ratio and lower energy expenditure under basal conditions (when they had only chow and water available). Our results provide evidence that Scon3 and Scon4 influence mouse-to-mouse variation in sucrose intake and that both likely act through a common postoral mechanism.


Assuntos
Estudos de Associação Genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Receptores Acoplados a Proteínas G/genética , Sacarose/metabolismo , Alelos , Animais , Metabolismo dos Carboidratos , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Genótipo , Camundongos , Camundongos Congênicos , Receptores Acoplados a Proteínas G/metabolismo , Especificidade da Espécie
9.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773496

RESUMO

Commercially available smell tests are primarily used in research or in-depth clinical evaluations and are too costly and time-consuming for population surveillance in health emergencies like COVID-19. To address this need, we developed the SCENTinel 1.0 test, which rapidly evaluates 3 olfactory functions: detection, intensity, and identification. We tested whether self-administering the SCENTinel 1.0 test discriminates between individuals with self-reported smell loss and those with average smell ability (normosmic individuals) and provides performance comparable to the validated and standardized NIH Toolbox Odor Identification Test in normosmic individuals. Using Bayesian linear models and prognostic classification algorithms, we compared the SCENTinel 1.0 performance of a group of self-reported anosmic individuals (N = 111, 47 ± 13 years old, F = 71%) and normosmic individuals (N = 154, 47 ± 14 years old, F = 74%) as well as individuals reporting other smell disorders (such as hyposmia or parosmia; N = 42, 55 ± 10 years old, F = 67%). Ninety-four percent of normosmic individuals met our SCENTinel 1.0 accuracy criteria compared with only 10% of anosmic individuals and 64% of individuals with other smell disorders. Overall performance on SCENTinel 1.0 predicted belonging to the normosmic group better than identification or detection alone (vs. anosmic: AUC = 0.95, specificity = 0.94). Odor intensity provided the best single-feature predictor to classify normosmic individuals. Among normosmic individuals, 92% met the accuracy criteria at both SCENTinel 1.0 and the NIH Toolbox Odor Identification Test. SCENTinel 1.0 is a practical test able to discriminate individuals with smell loss and will likely be useful in many clinical situations, including COVID-19 symptom screening.


Assuntos
COVID-19/diagnóstico , Odorantes/análise , Transtornos do Olfato/diagnóstico , Adolescente , Adulto , Idoso , Algoritmos , Teorema de Bayes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Chem Senses ; 45(9): 865-874, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245136

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has currently infected over 6.5 million people worldwide. In response to the pandemic, numerous studies have tried to identify the causes and symptoms of the disease. Emerging evidence supports recently acquired anosmia (complete loss of smell) and hyposmia (partial loss of smell) as symptoms of COVID-19, but studies of olfactory dysfunction show a wide range of prevalence from 5% to 98%. We undertook a search of Pubmed/Medline and Google Scholar with the keywords "COVID-19," "smell," and/or "olfaction." We included any study that quantified smell loss (anosmia and hyposmia) as a symptom of COVID-19. Studies were grouped and compared based on the type of method used to measure smell loss-subjective measures, such as self-reported smell loss, versus objective measures using rated stimuli-to determine if prevalence differed by method type. For each study, 95% confidence intervals (CIs) were calculated from point estimates of olfactory disturbances. We identified 34 articles quantifying anosmia as a symptom of COVID-19 (6 objective and 28 subjective), collected from cases identified from January 16 to April 30, 2020. The pooled prevalence estimate of smell loss was 77% when assessed through objective measurements (95% CI of 61.4-89.2%) and 44% with subjective measurements (95% CI of 32.2-57.0%). Objective measures are a more sensitive method to identify smell loss as a result of infection with SARS-CoV-2; the use of subjective measures, while expedient during the early stages of the pandemic, underestimates the true prevalence of smell loss.


Assuntos
COVID-19/patologia , Transtornos do Olfato/diagnóstico , Anosmia/diagnóstico , Anosmia/epidemiologia , Anosmia/etiologia , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Prevalência , Fatores de Risco , SARS-CoV-2/isolamento & purificação
11.
Chem Senses ; 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516399

RESUMO

To learn more about the mechanisms of human dietary fat perception, 398 human twins rated fattiness and liking for six types of potato chips that differed in triglyceride content (2.5, 5, 10, and 15% corn oil); reliability estimates were obtained from a subset (n = 50) who did the task twice. Some chips also had a saturated long-chain fatty acid (hexadecanoic acid, 16:0) added (0.2%) to evaluate its effect on fattiness and liking. We computed the heritability of these measures and conducted a genome-wide association study (GWAS) to identify regions of the genome that co-segregate with fattiness and liking. Perceived fattiness and liking for the potato chips were reliable (r = 0.31-0.62, p < 0.05) and heritable (up to h2 = 0.29, p < 0.001, for liking). Adding hexadecanoic acid to the potato chips significantly increased ratings of fattiness but decreased liking. Twins with the G allele of rs263429 near GATA3-AS1 or the G allele of rs8103990 within ZNF729 reported more liking for potato chips than did twins with the other allele (multivariate GWAS, p < 1×10-5), with results reaching genome-wide suggestive but not significance criteria. Person-to-person variation in the perception and liking of dietary fat was (a) negatively affected by the addition of a saturated fatty acid and (b) related to inborn genetic variants. These data suggest liking for dietary fat is not due solely to fatty acid content and highlight new candidate genes and proteins within this sensory pathway.

12.
Chem Senses ; 45(7): 493-502, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32556127

RESUMO

The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.


Assuntos
Transtornos do Olfato/terapia , Distúrbios do Paladar/terapia , Congressos como Assunto , Terapia Genética , Humanos , Transtornos do Olfato/patologia , Medicina Regenerativa , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Distúrbios do Paladar/patologia
13.
J Biol Chem ; 293(25): 9824-9840, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29748385

RESUMO

Bitter taste receptors (taste family 2 bitter receptor proteins; T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We have shown previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2R4, -14, -16, and -38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones activate T2Rs and stimulate these responses in primary airway cells. Quinolones are another type of quorum-sensing molecule used by Pseudomonas aeruginosa To elucidate whether bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors. T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at the air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone, and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, -16, and -38, whereas HHQ activated T2R14. 2,4-Dihydroxyquinolone had no effect. PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells. In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests that airway T2R-mediated immune responses are activated by bacterial quinolones as well as acyl-homoserine lactones.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Percepção de Quorum , Receptores Acoplados a Proteínas G/genética , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Paladar/efeitos dos fármacos , Paladar/fisiologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia
15.
Chem Senses ; 44(1): 33-40, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351347

RESUMO

TAS2R38 is a human bitter receptor gene with a common but inactive allele; people homozygous for the inactive form cannot perceive low concentrations of certain bitter compounds. The frequency of the inactive and active forms of this receptor is nearly equal in many human populations, and heterozygotes with 1 copy of the active form and 1 copy of the inactive form have the most common diplotype. However, even though they have the same genotype, heterozygotes differ markedly in their perception of bitterness, perhaps in part because of differences in TAS2R38 mRNA expression. Other tissues express this receptor too, including the nasal sinuses, where it contributes to pathogen defense. We, therefore, wondered whether heterozygous people had a similar wide range of TAS2R38 mRNA in sinonasal tissue and whether those with higher TAS2R38 mRNA expression in taste tissue were similarly high expressers in nasal tissue. To that end, we measured gene expression by quantitative PCR in taste and sinonasal tissue and found that expression abundance in one tissue was not related to the other. We confirmed the independence of expression in other tissue pairs expressing TAS2R38 mRNA, such as pancreas and small intestine, using autopsy data from the Genotype-Tissue Expression project (although people with high expression of TAS2R38 mRNA in colon also tended to have higher expression in the small intestine). Thus, taste tissue TAS2R38 mRNA expression among heterozygotes is unlikely to predict expression in other tissues, perhaps reflecting tissue-dependent function, and hence regulation, of this protein.


Assuntos
RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Alelos , Feminino , Expressão Gênica , Genótipo , Heterozigoto , Humanos , Masculino , Cavidade Nasal/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Paladar/fisiologia , Língua/metabolismo
16.
J Biol Chem ; 292(20): 8484-8497, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28373278

RESUMO

Chronic rhinosinusitis has a significant impact on patient quality of life, creates billions of dollars of annual healthcare costs, and accounts for ∼20% of adult antibiotic prescriptions in the United States. Because of the rise of resistant microorganisms, there is a critical need to better understand how to stimulate and/or enhance innate immune responses as a therapeutic modality to treat respiratory infections. We recently identified bitter taste receptors (taste family type 2 receptors, or T2Rs) as important regulators of sinonasal immune responses and potentially important therapeutic targets. Here, we examined the immunomodulatory potential of flavones, a class of flavonoids previously demonstrated to have antibacterial and anti-inflammatory effects. Some flavones are also T2R agonists. We found that several flavones inhibit Muc5AC and inducible NOS up-regulation as well as cytokine release in primary and cultured airway cells in response to several inflammatory stimuli. This occurs at least partly through inhibition of protein kinase C and receptor tyrosine kinase activity. We also demonstrate that sinonasal ciliated epithelial cells express T2R14, which closely co-localizes (<7 nm) with the T2R38 isoform. Heterologously expressed T2R14 responds to multiple flavones. These flavones also activate T2R14-driven calcium signals in primary cells that activate nitric oxide production to increase ciliary beating and mucociliary clearance. TAS2R38 polymorphisms encode functional (PAV: proline, alanine, and valine at positions 49, 262, and 296, respectively) or non-functional (AVI: alanine, valine, isoleucine at positions 49, 262, and 296, respectively) T2R38. Our data demonstrate that T2R14 in sinonasal cilia is a potential therapeutic target for upper respiratory infections and that flavones may have clinical potential as topical therapeutics, particularly in T2R38 AVI/AVI individuals.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonas/farmacologia , Imunidade Inata/efeitos dos fármacos , Mucosa Nasal/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Receptores Acoplados a Proteínas G/imunologia , Células A549 , Humanos , Imunidade Inata/genética , Mucina-5AC/genética , Mucina-5AC/imunologia , Óxido Nítrico/genética , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/genética , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética
17.
BMC Genomics ; 19(1): 678, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223776

RESUMO

BACKGROUND: Human perception of bitter substances is partially genetically determined. Previously we discovered a single nucleotide polymorphism (SNP) within the cluster of bitter taste receptor genes on chromosome 12 that accounts for 5.8% of the variance in the perceived intensity rating of quinine, and we strengthened the classic association between TAS2R38 genotype and the bitterness of propylthiouracil (PROP). Here we performed a genome-wide association study (GWAS) using a 40% larger sample (n = 1999) together with a bivariate approach to detect previously unidentified common variants with small effects on bitter perception. RESULTS: We identified two signals, both with small effects (< 2%), within the bitter taste receptor clusters on chromosomes 7 and 12, which influence the perceived bitterness of denatonium benzoate and sucrose octaacetate respectively. We also provided the first independent replication for an association of caffeine bitterness on chromosome 12. Furthermore, we provided evidence for pleiotropic effects on quinine, caffeine, sucrose octaacetate and denatonium benzoate for the three SNPs on chromosome 12 and the functional importance of the SNPs for denatonium benzoate bitterness. CONCLUSIONS: These findings provide new insights into the genetic architecture of bitter taste and offer a useful starting point for determining the biological pathways linking perception of bitter substances.


Assuntos
Cromossomos Humanos Par 12 , Cromossomos Humanos Par 7 , Estudo de Associação Genômica Ampla , Família Multigênica , Percepção Gustatória/genética , Adolescente , Adulto , Criança , Feminino , Pleiotropia Genética , Genótipo , Humanos , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/metabolismo , Adulto Jovem
18.
Mamm Genome ; 29(5-6): 325-343, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29737391

RESUMO

To fine map a mouse QTL for lean body mass (Burly1), we used information from intercross, backcross, consomic, and congenic mice derived from the C57BL/6ByJ (host) and 129P3/J (donor) strains. The results from these mapping populations were concordant and showed that Burly1 is located between 151.9 and 152.7 Mb (rs33197365 to rs3700604) on mouse chromosome 2. The congenic region harboring Burly1 contains 26 protein-coding genes, 11 noncoding RNA elements (e.g., lncRNA), and 4 pseudogenes, with 1949 predicted functional variants. Of the protein-coding genes, 7 have missense variants, including genes that may contribute to lean body weight, such as Angpt41, Slc52c3, and Rem1. Lean body mass was increased by the B6-derived variant relative to the 129-derived allele. Burly1 influenced lean body weight at all ages but not food intake or locomotor activity. However, congenic mice with the B6 allele produced more heat per kilogram of lean body weight than did controls, pointing to a genotype effect on lean mass metabolism. These results show the value of integrating information from several mapping populations to refine the map location of body composition QTLs and to identify a short list of candidate genes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Magreza/genética , Fatores Etários , Animais , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Metabolismo Energético/genética , Feminino , Estudos de Associação Genética , Variação Genética , Genótipo , Masculino , Camundongos , Magreza/metabolismo
20.
BMC Med Genet ; 18(1): 11, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28196478

RESUMO

BACKGROUND: Trimethylaminuria (TMAU) is a genetic disorder whereby people cannot convert trimethylamine (TMA) to its oxidized form (TMAO), a process that requires the liver enzyme FMO3. Loss-of-function variants in the FMO3 gene are a known cause of TMAU. In addition to the inability to metabolize TMA precursors like choline, patients often emit a characteristic odor because while TMAO is odorless, TMA has a fishy smell. The Monell Chemical Senses Center is a research institute with a program to evaluate people with odor complaints for TMAU. METHODS: Here we evaluated ten subjects by (1) odor evaluation by a trained sensory panel, (2) analysis of their urine concentration of TMA relative to TMAO before and after choline ingestion, and (3) whole exome sequencing as well as subsequent variant analysis of all ten samples to investigate the genetics of TMAU. RESULTS: While all subjects reported they often emitted a fish-like odor, none had this malodor during sensory evaluation. However, all were impaired in their ability to produce >90% TMAO/TMA in their urine and thus met the criteria for TMAU. To probe for genetic causes, the exome of each subject was sequenced, and variants were filtered by genes with a known (FMO3) or expected effect on TMA metabolism function (other oxidoreductases). We filtered the remaining variants by allele frequency and predicated functional effects. We identified one subject that had a rare loss-of-function FMO3 variant and six with more common decreased-function variants. In other oxidoreductases genes, five subjects had four novel rare single-nucleotide polymorphisms as well as one rare insertion/deletion. Novel in this context means no investigators have previously linked these variants to TMAU although they are in dbSNP. CONCLUSIONS: Thus, variants in genes other than FMO3 may cause TMAU and the genetic variants identified here serve as a starting point for future studies of impaired TMA metabolism.


Assuntos
Erros Inatos do Metabolismo/genética , Metilaminas/urina , Adolescente , Adulto , Idoso , Colina/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Feminino , Testes Genéticos , Genótipo , Humanos , Mutação INDEL , Masculino , Erros Inatos do Metabolismo/diagnóstico , Metilaminas/metabolismo , Pessoa de Meia-Idade , Oxigenases/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA