Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 27(7): 1164-1173, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360981

RESUMO

Acute intermittent porphyria (AIP) is a disease affecting the heme biosynthesis pathway caused by mutations of the hydroxymethylbilane synthase (HMBS) gene. AIP is thought to display autosomal dominant inheritance with incomplete penetrance. We evaluated the prevalence, penetrance and heritability of AIP, in families with the disease from the French reference center for porphyria (CFP) (602 overt patients; 1968 relatives) and the general population, using Exome Variant Server (EVS; 12 990 alleles) data. The pathogenicity of the 42 missense variants identified was assessed in silico, and in vitro, by measuring residual HMBS activity of the recombinant protein. The minimal estimated prevalence of AIP in the general population was 1/1299. Thus, 50 000 subjects would be expected to carry the AIP genetic trait in France. Penetrance was estimated at 22.9% in families with AIP, but at only 0.5-1% in the general population. Intrafamily correlation studies showed correlations to be strong overall and modulated by kinship and the area in which the person was living, demonstrating strong influences of genetic and environmental modifiers on inheritance. Null alleles were associated with a more severe phenotype and a higher penetrance than for other mutant alleles. In conclusion, the striking difference in the penetrance of HMBS mutations between the general population and the French AIP families suggests that AIP inheritance does not follow the classical autosomal dominant model, instead of being modulated by strong environmental and genetic factors independent from HMBS. An oligogenic inheritance model with environmental modifiers might better explain AIP penetrance and heritability.


Assuntos
Bases de Dados de Ácidos Nucleicos , Interação Gene-Ambiente , Hidroximetilbilano Sintase/genética , Mutação de Sentido Incorreto , Penetrância , Porfiria Aguda Intermitente/genética , Feminino , França/epidemiologia , Humanos , Masculino , Porfiria Aguda Intermitente/enzimologia , Porfiria Aguda Intermitente/epidemiologia , Prevalência
2.
J Am Soc Nephrol ; 28(6): 1924-1932, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28031405

RESUMO

CKD occurs in most patients with acute intermittent porphyria (AIP). During AIP, δ-aminolevulinic acid (ALA) accumulates and promotes tubular cell death and tubulointerstitial damage. The human peptide transporter 2 (PEPT2) expressed by proximal tubular cells mediates the reabsorption of ALA, and variants of PEPT2 have different affinities for ALA. We tested the hypothesis that PEPT2 genotypes affect the severity and prognosis of porphyria-associated kidney disease. We analyzed data from 122 individuals with AIP who were followed from 2003 to 2013 and genotyped for PEPT2 At last follow-up, carriers of the PEPT2*1*1 genotype (higher affinity variant) exhibited worse renal function than carriers of the lower affinity variants PEPT2*1/*2 and PEPT2*2/*2 (mean±SD eGFR: 54.4±19.1, 66.6±23.8, and 78.1±19.9 ml/min per 1.73 m2, respectively). Change in eGFR (mean±SD) over the 10-year period was -11.0±3.3, -2.4±1.9, and 3.4±2.6 ml/min per 1.73 m2 for PEPT2*1/*1, PEPT2*1*2, and PEPT*2*2*2 carriers, respectively. At the end of follow-up, 68% of PEPT2*1*1 carriers had an eGFR<60 ml/min per 1.73 m2, compared with 37% of PEPT2*1*2 carriers and 15% of PEPT2*2*2 carriers. Multiple regression models including all confounders indicated that the PEPT2*1*1 genotype independently associated with an eGFR<60 ml/min per 1.73 m2 (odds ratio, 6.85; 95% confidence interval, 1.34 to 46.20) and an annual decrease in eGFR of >1 ml/min per 1.73 m2 (odds ratio, 3.64; 95% confidence interval, 1.37 to 9.91). Thus, a gene variant is predictive of the severity of a chronic complication of AIP. The therapeutic value of PEPT2 inhibitors in preventing porphyria-associated kidney disease warrants investigation.


Assuntos
Porfirias/complicações , Porfirias/genética , Insuficiência Renal Crônica/genética , Simportadores/genética , Doença Aguda , Idoso , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença
3.
Gastroenterology ; 150(3): 672-683.e4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582087

RESUMO

BACKGROUND & AIMS: Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals. METHODS: We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses. RESULTS: We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production. CONCLUSIONS: We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced hepcidin production. These mutations might increase susceptibility to mild-to-moderate late-onset iron overload.


Assuntos
Proteína Morfogenética Óssea 6/genética , Hemocromatose/genética , Hemocromatose/metabolismo , Hepcidinas/biossíntese , Heterozigoto , Ferro/metabolismo , Fígado/metabolismo , Mutação de Sentido Incorreto , Idoso , Animais , Biópsia , Proteína Morfogenética Óssea 6/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Cromatografia Líquida , Análise Mutacional de DNA , Feminino , Ferritinas/sangue , Estudos de Associação Genética , Predisposição Genética para Doença , Hemocromatose/sangue , Hepcidinas/sangue , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gambás , Fenótipo , Proteínas Smad Reguladas por Receptor/metabolismo , Espectrometria de Massas em Tandem , Transfecção
4.
Mamm Genome ; 24(11-12): 427-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121729

RESUMO

Disorders of iron metabolism are among the most common acquired and constitutive diseases. Hemochromatosis has a solid genetic basis and in Northern European populations it is usually associated with homozygosity for the C282Y mutation in the HFE protein. However, the penetrance of this mutation is incomplete and the clinical presentation is highly variable. The rare and common variants identified so far as genetic modifiers of HFE-related hemochromatosis are unable to account for the phenotypic heterogeneity of this disorder. There are wide variations in the basal iron status of common inbred mouse strains, and this diversity may reflect the genetic background of the phenotypic diversity under pathological conditions. We therefore examined the genetic basis of iron homeostasis using quantitative trait loci mapping applied to the HcB-15 recombinant congenic strains for tissue and serum iron indices. Two highly significant QTL containing either the N374S Mon1a mutation or the Ferroportin locus were found to be major determinants in spleen and liver iron loading. Interestingly, when considering possible epistatic interactions, the effects of Mon1a on macrophage iron export are conditioned by the genotype at the Slc40a1 locus. Only mice that are C57BL/10ScSnA homozygous at both loci display a lower spleen iron burden. Furthermore, the liver-iron lowering effect of the N374S Mon1a mutation is observed only in mice that display a nonsense mutation in the Ceruloplasmin (Cp) gene. This study highlights the existence of genetic interactions between Cp, Mon1a, and the Slc40a1 locus in iron metabolism, suggesting that epistasis may be a crucial determinant of the variable biological and clinical presentations in iron disorders.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Epistasia Genética , Hemocromatose/veterinária , Ferro/metabolismo , Camundongos/genética , Doenças dos Roedores/genética , Animais , Feminino , Hemocromatose/genética , Hemocromatose/metabolismo , Fígado/metabolismo , Masculino , Camundongos/metabolismo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Doenças dos Roedores/metabolismo , Baço/metabolismo
5.
Nat Genet ; 30(1): 27-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11753383

RESUMO

Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by a partial deficiency of ferrochelatase (FECH, EC 4.99.1.1). EPP is transmitted as an autosomal dominant disorder with an incomplete penetrance. Using haplotype segregation analysis, we have identified an intronic single nucleotide polymorphism (SNP), IVS3-48T/C, that modulates the use of a constitutive aberrant acceptor splice site. The aberrantly spliced mRNA is degraded by a nonsense-mediated decay mechanism (NMD), producing a decreased steady-state level of mRNA and the additional FECH enzyme deficiency necessary for EPP phenotypic expression.


Assuntos
Ferroquelatase/biossíntese , Regulação Enzimológica da Expressão Gênica , Genes Dominantes , Penetrância , Mutação Puntual , Porfiria Eritropoética/genética , Sítios de Splice de RNA/genética , Sequência de Bases , DNA Antissenso/genética , Feminino , Ferroquelatase/genética , Ferroquelatase/fisiologia , França/epidemiologia , Frequência do Gene , Genótipo , Haplótipos , Humanos , Íntrons/genética , Masculino , Dados de Sequência Molecular , Polimorfismo Genético , Porfiria Eritropoética/epidemiologia , Protoporfiria Eritropoética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Gastroenterology ; 132(2): 679-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17258727

RESUMO

BACKGROUND & AIMS: Genetic hemochromatosis is one of the most common genetic disorders, with progressive tissue iron overload leading to severe clinical complications. In Northern European populations, genetic hemochromatosis is usually caused by homozygosity for the C282Y mutation in the HFE protein. However, penetrance of this mutation is incomplete, suggesting that other genetic and environmental factors contribute to its differential biologic or clinical expression. METHODS: To identify genes modifying iron homeostasis, we screened the 27 recombinant congenic strains of the C3H/DiSnA-C57BL/10ScSnA/Dem series for tissue and serum iron indices and genotyped 18 microsatellite markers in (C3H/DiSnA x HcB-2) F2 hybrid mice. RESULTS: We identified 1 locus encompassing the Ceruloplasmin (Cp) gene with a strong linkage with liver iron, serum iron, and transferrin levels but not with spleen iron. Sequencing of Cp showed an R435X nonsense mutation in exon 7 in C3H/DiSnA mice. To evaluate whether Cp might act as a modifier gene of genetic hemochromatosis, we intercrossed C3H Hfe(-/-) and C3HDiSnA Cp(R435X/R435X) mice. As expected, we found that double-mutant mice deposited more iron in the liver than mice defective for either one or both genes. In contrast, Hfe(-/-) x Cp(R435/R435X) or Cp(R435X/R435X) x Hfe(+/-) showed 30% decrease in liver iron when compared with single mutant mice. CONCLUSIONS: This study highlights the existence of complex interactions between Cp and HFE and represents the first example of a modifier gene with a protective effect, in which heterozygosity reduces the iron load in the context of HFE deficiency.


Assuntos
Ceruloplasmina/genética , Ligação Genética , Hemocromatose/genética , Hemocromatose/metabolismo , Ferro/metabolismo , Animais , Códon sem Sentido , Cruzamentos Genéticos , Modelos Animais de Doenças , Eritrócitos/metabolismo , Genótipo , Hemocromatose/sangue , Hemocromatose/fisiopatologia , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/genética , Homeostase/genética , Ferro/sangue , Fígado/metabolismo , Escore Lod , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Penetrância , Fagocitose , Fenótipo , Locos de Características Quantitativas , Baço/metabolismo , Transferrina/metabolismo
7.
Am J Hum Genet ; 78(1): 2-14, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16385445

RESUMO

Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis that results from a partial deficiency of ferrochelatase (FECH). Recently, we have shown that the inheritance of the common hypomorphic IVS3-48C allele trans to a deleterious mutation reduces FECH activity to below a critical threshold and accounts for the photosensitivity seen in patients. Rare cases of autosomal recessive inheritance have been reported. We studied a cohort of 173 white French EPP families and a group of 360 unrelated healthy subjects from four ethnic groups. The prevalences of the recessive and dominant autosomal forms of EPP are 4% (95% confidence interval 1-8) and 95% (95% confidence interval 91-99), respectively. In 97.9% of dominant cases, an IVS3-48C allele is co-inherited with the deleterious mutation. The frequency of the IVS3-48C allele differs widely in the Japanese (43%), southeast Asian (31%), white French (11%), North African (2.7%), and black West African (<1%) populations. These differences can be related to the prevalence of EPP in these populations and could account for the absence of EPP in black subjects. The phylogenic origin of the IVS3-48C haplotypes strongly suggests that the IVS3-48C allele arose from a single recent mutational event. Estimation of the age of the IVS3-48C allele from haplotype data in white and Asian populations yields an estimated age three to four times younger in the Japanese than in the white population, and this difference may be attributable either to differing demographic histories or to positive selection for the IVS3-48C allele in the Asian population. Finally, by calculating the KA/KS ratio in humans and chimpanzees, we show that the FECH protein sequence is subject to strong negative pressure. Overall, EPP looks like a Mendelian disorder, in which the prevalence of overt disease depends mainly on the frequency of a single common single-nucleotide polymorphism resulting from a unique mutational event that occurred 60,000 years ago.


Assuntos
Ferroquelatase/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Protoporfiria Eritropoética/epidemiologia , Protoporfiria Eritropoética/genética , Sequência de Bases , Análise Mutacional de DNA , Etnicidade/genética , França/epidemiologia , Componentes do Gene , Genética Populacional , Haplótipos/genética , Humanos , Padrões de Herança/genética , Dados de Sequência Molecular , Filogenia , Prevalência , Seleção Genética , Análise de Sequência de DNA , Estatísticas não Paramétricas , População Branca/genética
8.
Hum Genet ; 114(3): 256-62, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14669009

RESUMO

We have recently demonstrated that in an autosomal dominant porphyria, erythropoietic protoporphyria (EPP), the coinheritance of a ferrochelatase (FECH) gene defect and of a wild-type low-expressed FECH allele is generally involved in the clinical expression of EPP. This mechanism may provide a model for phenotype modulation by minor variations in the expression of the wild-type allele in the other three autosomal dominant porphyrias that exhibit incomplete penetrance: acute intermittent porphyria (AIP), variegata porphyria (VP) and hereditary coproporphyria (HC), which are caused by partial deficiencies of hydroxy-methyl bilane synthase (HMBS), protoporphyrinogen oxidase (PPOX) and coproporphyrinogen oxidase (CPO), respectively. Given the dominant mode of inheritance of EPP, VP, AIP and HC, we first confirmed that the 200 overtly porphyric subjects (55 EPP, 58 AIP, 56 VP; 31 HC) presented a single mutation restricted to one allele (20 novel mutations and 162 known mutations). We then analysed the available single-nucleotide polymorphisms (SNPs) present at high frequencies in the general population and spreading throughout the FECH, HMBS, PPOX and the CPO genes in four case-control association studies. Finally, we explored the functional consequences of polymorphisms on the abundance of wild-type RNA, and used relative allelic mRNA determinations to find out whether low-expressed HMBS, PPOX and the CPO alleles occur in the general population. We confirm that the wild-type low-expressed allele phenomenon is usually operative in the mechanism of variable penetrance in EPP, but conclude that this is not the case in AIP and VP. For HC, the CPO mRNA determinations strongly suggest that normal CPO alleles with low-expression are present, but whether this low-expression of the wild-type allele could modulate the penetrance of a CPO gene defect in HC families remains to be ascertained.


Assuntos
Alelos , Genes Dominantes , Penetrância , Porfiria Hepatoeritropoética/genética , Porfirias Hepáticas/genética , Doença Aguda , Estudos de Casos e Controles , Estudos de Coortes , Coproporfirinogênio Oxidase/genética , Análise Mutacional de DNA , Ferroquelatase/genética , Flavoproteínas , Humanos , Hidroximetilbilano Sintase/genética , Proteínas Mitocondriais , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Polimorfismo de Nucleotídeo Único , Porfiria Hepatoeritropoética/diagnóstico , Porfirias Hepáticas/diagnóstico , Protoporfirinogênio Oxidase , RNA Mensageiro/análise , Reprodutibilidade dos Testes , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA