Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526163

RESUMO

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Assuntos
Azepinas/farmacologia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/patologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Fatores de Transcrição/genética
2.
Pediatr Res ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951656

RESUMO

OBJECTIVES: Hepatic ischemia and hypoxia are accompanied by reduced bile flow, biliary sludge and cholestasis. Hepatobiliary transport systems, nuclear receptors and aquaporins were studied after hypoxia and reoxygenation in human hepatic cells. METHODS: Expression of Aquaporin 8 (AQP8), Aquaporin 9 (AQP9), Pregnane X receptor (PXR), Farnesoid X receptor (FXR), Organic anion transporting polypeptide 1 (OATP1), and the Multidrug resistance-associated protein 4 (MRP4) were investigated in induced pluripotent stem cells (iPSCs) derived hepatic cells and the immortalized hepatic line HepG2. HepG2 was subjected to combined oxygen and glucose deprivation for 4 h followed by reoxygenation. RESULTS: Expression of AQP8 and AQP9 increased during differentiation in iPSC-derived hepatic cells. Hypoxia did not alter mRNA levels of AQP8, but reoxygenation caused a marked increase in AQP8 mRNA expression. While expression of OATP1 had a transient increase during reoxygenation, MRP4 showed a delayed downregulation. Knock-down of FXR did not alter the expression of AQP8, AQP9, MRP4, or OATP1. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation compared to normoxic controls. CONCLUSIONS: Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Expression patterns differed between hepatobiliary transport systems during hypoxia and reoxygenation. IMPACT: Expression of AQP8 and AQP9 increased during differentiation in induced pluripotent stem cells. Expression of hepatobiliary transporters varies during hypoxia and reoxygenation. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation. Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Hypoxia and reoxygenation may affect aquaporins in hepatic cells and potentially affect bile composition.

3.
J Pediatr Gastroenterol Nutr ; 78(5): 1047-1058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38529852

RESUMO

OBJECTIVES: Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS: We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS: Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS: Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.


Assuntos
Citocromo P-450 CYP3A , Células-Tronco Pluripotentes Induzidas , Fígado , Organoides , Nutrição Parenteral , Óleo de Soja , Organoides/efeitos dos fármacos , Organoides/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/citologia , Óleo de Soja/farmacologia , Fosfolipídeos/farmacologia , Fosfolipídeos/metabolismo , Emulsões , Emulsões Gordurosas Intravenosas/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Azeite de Oliva/farmacologia , Recém-Nascido , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética
4.
J Hepatol ; 75(4): 935-959, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171436

RESUMO

Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Consenso , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Europa (Continente) , Humanos , Fígado/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 109(15): 5803-8, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451909

RESUMO

Transactive response DNA-binding (TDP-43) protein is the dominant disease protein in amyotrophic lateral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-TDP). Identification of mutations in the gene encoding TDP-43 (TARDBP) in familial ALS confirms a mechanistic link between misaccumulation of TDP-43 and neurodegeneration and provides an opportunity to study TDP-43 proteinopathies in human neurons generated from patient fibroblasts by using induced pluripotent stem cells (iPSCs). Here, we report the generation of iPSCs that carry the TDP-43 M337V mutation and their differentiation into neurons and functional motor neurons. Mutant neurons had elevated levels of soluble and detergent-resistant TDP-43 protein, decreased survival in longitudinal studies, and increased vulnerability to antagonism of the PI3K pathway. We conclude that expression of physiological levels of TDP-43 in human neurons is sufficient to reveal a mutation-specific cell-autonomous phenotype and strongly supports this approach for the study of disease mechanisms and for drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/patologia , Mutação/genética , Proteinopatias TDP-43/genética , Adulto , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Detergentes/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
6.
J Cell Biochem ; 114(11): 2446-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744605

RESUMO

Rett syndrome (RTT) is one of most prevalent female neurodevelopmental disorders. De novo mutations in X-linked MECP2 are mostly responsible for RTT. Since the identification of MeCP2 as the underlying cause of RTT, murine models have contributed to understanding the pathophysiology of RTT and function of MeCP2. Reprogramming is a procedure to produce induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors. iPSCs obtain similar features as embryonic stem cells and are capable of self-renewing and differentiating into cells of all three layers. iPSCs have been utilized in modeling human diseases in vitro. Neurons differentiated from RTT-iPSCs showed the recapitulation of RTT phenotypes. Despite the early success, genetic and epigenetic instability upon reprogramming and ensuing maintenance of iPSCs raise concerns in using RTT-iPSCs as an accurate in vitro model. Here, we update the current iPSC-based RTT modeling, and its concerns and challenges.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Rett/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo
7.
Front Physiol ; 14: 1094249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711019

RESUMO

The bleeding phenotype of hereditary coagulation disorders is caused by the low or undetectable activity of the proteins involved in hemostasis, due to a broad spectrum of genetic alterations. Most of the affected coagulation factors are produced in the liver. Therefore, two-dimensional (2D) cultures of primary human hepatocytes and recombinant overexpression of the factors in non-human cell lines have been primarily used to mimic disease pathogenesis and as a model for innovative therapeutic strategies. However, neither human nor animal cells fully represent the hepatocellular biology and do not harbor the exact genetic background of the patient. As a result, the inability of the current in vitro models in recapitulating the in vivo situation has limited the studies of these inherited coagulation disorders. Induced Pluripotent Stem Cell (iPSC) technology offers a possible solution to overcome these limitations by reprogramming patient somatic cells into an embryonic-like pluripotent state, thus giving the possibility of generating an unlimited number of liver cells needed for modeling or therapeutic purposes. By combining this potential and the recent advances in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, it allows for the generation of autologous and gene corrected liver cells in the form of three-dimensional (3D) liver organoids. The organoids recapitulate cellular composition and organization of the liver, providing a more physiological model to study the biology of coagulation proteins and modeling hereditary coagulation disorders. This advanced methodology can pave the way for the development of cell-based therapeutic approaches to treat inherited coagulation disorders. In this review we will explore the use of liver organoids as a state-of-the-art methodology for modeling coagulation factors disorders and the possibilities of using organoid technology to treat the disease.

8.
Acta Biomater ; 171: 336-349, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734628

RESUMO

Hepatic in vitro models that accurately replicate phenotypes and functionality of the human liver are needed for applications in toxicology, pharmacology and biomedicine. Notably, it has become clear that liver function can only be sustained in 3D culture systems at physiologically relevant cell densities. Additionally, drug metabolism and drug-induced cellular toxicity often follow distinct spatial micropatterns of the metabolic zones in the liver acinus, calling for models that capture this zonation. We demonstrate the manufacture of accurate liver microphysiological systems (MPS) via engineering of 3D stereolithography printed hydrogel chips with arrays of diffusion open synthetic vasculature channels at spacings approaching in vivo capillary distances. Chip designs are compatible with seeding of cell suspensions or preformed liver cell spheroids. Importantly, primary human hepatocytes (PHH) and hiPSC-derived hepatocyte-like cells remain viable, exhibit improved molecular phenotypes compared to isogenic monolayer and static spheroid cultures and form interconnected tissue structures over the course of multiple weeks in perfused culture. 3D optical oxygen mapping of embedded sensor beads shows that the liver MPS recapitulates oxygen gradients found in the acini, which translates into zone-specific acet-ami-no-phen toxicity patterns. Zonation, here naturally generated by high cell densities and associated oxygen and nutrient utilization along the flow path, is also documented by spatial proteomics showing increased concentration of periportal- versus perivenous-associated proteins at the inlet region and vice versa at the outlet region. The presented microperfused liver MPS provides a promising platform for the mesoscale culture of human liver cells at phenotypically relevant densities and oxygen exposures. STATEMENT OF SIGNIFICANCE: A full 3D tissue culture platform is presented, enabled by massively parallel arrays of high-resolution 3D printed microperfusion hydrogel channels that functionally mimics tissue vasculature. The platform supports long-term culture of liver models with dimensions of several millimeters at physiologically relevant cell densities, which is difficult to achieve with other methods. Human liver models are generated from seeded primary human hepatocytes (PHHs) cultured for two weeks, and from seeded spheroids of hiPSC-derived human liver-like cells cultured for two months. Both model types show improved functionality over state-of-the-art 3D spheroid suspensions cultured in parallel. The platform can generate physiologically relevant oxygen gradients driven by consumption rather than supply, which was validated by visualization of embedded oxygen-sensitive microbeads, which is exploited to demonstrate zonation-specific toxicity in PHH liver models.


Assuntos
Hepatócitos , Fígado , Humanos , Hepatócitos/metabolismo , Oxigênio/metabolismo , Hidrogéis/metabolismo
9.
Exp Mol Med ; 55(9): 2005-2024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653039

RESUMO

The lack of physiological parity between 2D cell culture and in vivo culture has led to the development of more organotypic models, such as organoids. Organoid models have been developed for a number of tissues, including the liver. Current organoid protocols are characterized by a reliance on extracellular matrices (ECMs), patterning in 2D culture, costly growth factors and a lack of cellular diversity, structure, and organization. Current hepatic organoid models are generally simplistic and composed of hepatocytes or cholangiocytes, rendering them less physiologically relevant compared to native tissue. We have developed an approach that does not require 2D patterning, is ECM independent, and employs small molecules to mimic embryonic liver development that produces large quantities of liver-like organoids. Using single-cell RNA sequencing and immunofluorescence, we demonstrate a liver-like cellular repertoire, a higher order cellular complexity, presenting with vascular luminal structures, and a population of resident macrophages: Kupffer cells. The organoids exhibit key liver functions, including drug metabolism, serum protein production, urea synthesis and coagulation factor production, with preserved post-translational modifications such as N-glycosylation and functionality. The organoids can be transplanted and maintained long term in mice producing human albumin. The organoids exhibit a complex cellular repertoire reflective of the organ and have de novo vascularization and liver-like function. These characteristics are a prerequisite for many applications from cellular therapy, tissue engineering, drug toxicity assessment, and disease modeling to basic developmental biology.


Assuntos
Fígado , Organoides , Humanos , Animais , Camundongos , Engenharia Tecidual , Hepatócitos , Células Cultivadas
10.
Genome Biol ; 24(1): 216, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773136

RESUMO

BACKGROUND: Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS: We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS: This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.


Assuntos
Cerebelo , Histonas , Proteínas Mitocondriais , Doenças Neurodegenerativas , Humanos , Arginina/genética , Arginina/metabolismo , Atrofia , Histonas/metabolismo , Metilação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Cerebelo/patologia
11.
Front Pharmacol ; 13: 835825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721220

RESUMO

Aortic valve stenosis secondary to aortic valve calcification is the most common valve disease in the Western world. Calcification is a result of pathological proliferation and osteogenic differentiation of resident valve interstitial cells. To develop non-surgical treatments, the molecular and cellular mechanisms of pathological calcification must be revealed. In the current overview, we present methods for evaluation of calcification in different ex vivo, in vitro and in vivo situations including imaging in patients. The latter include echocardiography, scanning with computed tomography and magnetic resonance imaging. Particular emphasis is on translational studies of calcific aortic valve stenosis with a special focus on cell culture using human primary cell cultures. Such models are widely used and suitable for screening of drugs against calcification. Animal models are presented, but there is no animal model that faithfully mimics human calcific aortic valve disease. A model of experimentally induced calcification in whole porcine aortic valve leaflets ex vivo is also included. Finally, miscellaneous methods and aspects of aortic valve calcification, such as, for instance, biomarkers are presented.

12.
Autophagy ; 18(8): 1915-1931, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34923909

RESUMO

Early events during development leading to exit from a pluripotent state and commitment toward a specific germ layer still need in-depth understanding. Autophagy has been shown to play a crucial role in both development and differentiation. This study employs human embryonic and induced pluripotent stem cells to understand the early events of lineage commitment with respect to the role of autophagy in this process. Our data indicate that a dip in autophagy facilitates exit from pluripotency. Upon exit, we demonstrate that the modulation of autophagy affects SOX2 levels and lineage commitment, with induction of autophagy promoting SOX2 degradation and mesendoderm formation, whereas inhibition of autophagy causes SOX2 accumulation and neuroectoderm formation. Thus, our results indicate that autophagy-mediated SOX2 turnover is a determining factor for lineage commitment. These findings will deepen our understanding of development and lead to improved methods to derive different lineages and cell types.Abbreviations: ACTB: Actin, beta; ATG: Autophagy-related; BafA1: Bafilomycin A1; CAS9: CRISPR-associated protein 9; CQ: Chloroquine; DE: Definitive endoderm; hESCs: Human Embryonic Stem Cells; hiPSCs: Human Induced Pluripotent Stem Cells; LAMP1: Lysosomal Associated Membrane Protein 1; MAP1LC3: Microtubule-Associated Protein 1 Light Chain 3; MTOR: Mechanistic Target Of Rapamycin Kinase; NANOG: Nanog Homeobox; PAX6: Paired Box 6; PE: Phosphatidylethanolamine; POU5F1: POU class 5 Homeobox 1; PRKAA2: Protein Kinase AMP-Activated Catalytic Subunit Alpha 2; SOX2: SRY-box Transcription Factor 2; SQSTM1: Sequestosome 1; ULK1: unc-51 like Autophagy Activating Kinase 1; WDFY3: WD Repeat and FYVE Domain Containing 3.


Assuntos
Autofagia , Células-Tronco Pluripotentes Induzidas , Autofagia/fisiologia , Diferenciação Celular , Células HeLa , Humanos
13.
Hepatology ; 51(1): 329-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877180

RESUMO

UNLABELLED: With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation to a defined lineage, such as hepatic endoderm (HE), iPSCs would revolutionize the way we study human liver biology and generate efficient "off the shelf" models of human liver disease. Here, we show the "proof of concept" that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70%-90%, using a method mimicking physiological relevant condition. The iPSC-derived HE exhibited hepatic morphology and expressed the hepatic markers albumin and E-cadherin, as assessed by immunohistochemistry. They also expressed alpha-fetoprotein, hepatocyte nuclear factor-4a, and a metabolic marker, cytochrome P450 7A1 (Cyp7A1), demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin, and alpha-fetoprotein, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and CYP3A4 metabolism, which is essential for drug and toxicology testing. CONCLUSION: This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSCs that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSCs from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionize predictive drug toxicology assays and allow the creation of in vitro hepatic disease models.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Linhagem da Célula , Feminino , Humanos , Masculino
14.
iScience ; 24(2): 102063, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554067

RESUMO

Brain organoids closely recapitulate many features and characteristics of in vivo brain tissue. This technology in turn allows unprecedented possibilities to investigate brain development and function in the dish. Several brain organoid protocols have been established, and the studies have focused on validating the architecture, cellular composition, and function of the organoids. In future, the improved and advanced organoid models will enable us to understand cellular and molecular features of the developing brain. However, several obstacles, such as the quality of the organoids, 3D structural analysis, and measurement of the neural connectivity need to be improved. In this perspective, we will provide an overview of the current state of the art of the brain organoid field, with a focus on protocols and organoid characterization. Additionally, we will address the current limitations of this evolving field and provide an understanding of the current brain organoid landscape and insight toward the next steps.

15.
Front Cell Dev Biol ; 9: 744777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722525

RESUMO

Given the considerable interest in using stem cells for modeling and treating disease, it is essential to understand what regulates self-renewal and differentiation. Remodeling of mitochondria and metabolism, with the shift from glycolysis to oxidative phosphorylation (OXPHOS), plays a fundamental role in maintaining pluripotency and stem cell fate. It has been suggested that the metabolic "switch" from glycolysis to OXPHOS is germ layer-specific as glycolysis remains active during early ectoderm commitment but is downregulated during the transition to mesoderm and endoderm lineages. How mitochondria adapt during these metabolic changes and whether mitochondria remodeling is tissue specific remain unclear. Here, we address the question of mitochondrial adaptation by examining the differentiation of human pluripotent stem cells to cardiac progenitors and further to differentiated mesodermal derivatives, including functional cardiomyocytes. In contrast to recent findings in neuronal differentiation, we found that mitochondrial content decreases continuously during mesoderm differentiation, despite increased mitochondrial activity and higher levels of ATP-linked respiration. Thus, our work highlights similarities in mitochondrial remodeling during the transition from pluripotent to multipotent state in ectodermal and mesodermal lineages, while at the same time demonstrating cell-lineage-specific adaptations upon further differentiation. Our results improve the understanding of how mitochondrial remodeling and the metabolism interact during mesoderm differentiation and show that it is erroneous to assume that increased OXPHOS activity during differentiation requires a simultaneous expansion of mitochondrial content.

16.
Cell Rep Med ; 2(4): 100240, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948573

RESUMO

Essential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in HUWE1 cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes. By focusing on Juberg-Marsidi syndrome (JMS), one of the severest XLIDs, we show that increased p53 signaling results from p53 accumulation caused by HUWE1 p.G4310R destabilization. This further alters cell-cycle progression and proliferation in JMS cells. Modeling of JMS neurodevelopment reveals majorly impaired neural differentiation accompanied by increased p53 signaling. The neural differentiation defects can be successfully rescued by reducing p53 levels and restoring the expression of p53 target genes, in particular CDKN1A/p21. In summary, our findings suggest that increased p53 signaling underlies HUWE1-promoted syndromes and impairs XLID JMS neural differentiation.


Assuntos
Diferenciação Celular/genética , Deficiência Intelectual/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Diferenciação Celular/fisiologia , Genes Ligados ao Cromossomo X/genética , Humanos , Mutação/genética
17.
Cell Rep ; 30(6): 1682-1689.e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049002

RESUMO

Human brain organoid systems offer unprecedented opportunities to investigate both neurodevelopmental and neurological disease. Single-cell-based transcriptomics or epigenomics have dissected the cellular and molecular heterogeneity in the brain organoids, revealing a complex organization. Similar but distinct protocols from different labs have been applied to generate brain organoids, providing a large resource to perform a comparative analysis of brain developmental processes. Here, we take a systematic approach to compare the single-cell transcriptomes of various human cortical brain organoids together with fetal brain to define the identity of specific cell types and differentiation routes in each method. Importantly, we identify unique developmental programs in each protocol compared to fetal brain, which will be a critical benchmark for the utility of human brain organoids in the future.


Assuntos
Encéfalo/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Transcriptoma/genética , Feminino , Feto , Humanos , Masculino
18.
Nat Commun ; 9(1): 2583, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968706

RESUMO

Embryonic stem cells (ESCs) maintain pluripotency through unique epigenetic states. When ESCs commit to a specific lineage, epigenetic changes in histones and DNA accompany the transition to specialized cell types. Investigating how epigenetic regulation controls lineage specification is critical in order to generate the required cell types for clinical applications. Uhrf1 is a widely known hemi-methylated DNA-binding protein, playing a role in DNA methylation through the recruitment of Dnmt1 and in heterochromatin formation alongside G9a, Trim28, and HDACs. Although Uhrf1 is not essential in ESC self-renewal, it remains elusive how Uhrf1 regulates cell specification. Here we report that Uhrf1 forms a complex with the active trithorax group, the Setd1a/COMPASS complex, to maintain bivalent histone marks, particularly those associated with neuroectoderm and mesoderm specification. Overall, our data demonstrate that Uhrf1 safeguards proper differentiation via bivalent histone modifications.


Assuntos
Reprogramação Celular/genética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Técnicas de Reprogramação Celular , Quimera , Metilação de DNA/fisiologia , Epigênese Genética , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histonas/metabolismo , Humanos , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas , Placa Neural/citologia , Placa Neural/fisiologia , Proteínas Nucleares/genética , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases
19.
Mol Cell Biol ; 22(2): 657-68, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756560

RESUMO

The HMG box containing protein UBF binds to the promoter of vertebrate ribosomal repeats and is required for their transcription by RNA polymerase I in vitro. UBF can also bind in vitro to a variety of sequences found across the intergenic spacer in Xenopus and mammalian ribosomal DNA (rDNA) repeats. The high abundance of UBF, its colocalization with rDNA in vivo, and its DNA binding characteristics, suggest that it plays a more generalized structural role over the rDNA repeat. Until now this view has not been supported by any in vivo data. Here, we utilize chromatin immunoprecipitation from a highly enriched nucleolar chromatin fraction to show for the first time that UBF binding in vivo is not restricted to known regulatory sequences but extends across the entire intergenic spacer and transcribed region of Xenopus, human, and mouse rDNA repeats. These results are consistent with a structural role for UBF at active nucleolar organizer regions in addition to its recognized role in stable transcription complex formation at the promoter.


Assuntos
DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Genes Reguladores , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Substâncias Macromoleculares , Camundongos , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Sequências Repetitivas de Ácido Nucleico , Xenopus laevis
20.
Curr Protoc Stem Cell Biol ; 43: 1G.7.1-1G.7.23, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140570

RESUMO

Human pluripotent stem cells (hPSCs) hold tremendous promise for regenerative medicine, disease modeling, toxicology screening, and developmental biology. These applications are hindered due to inherent differences in differentiation potential observed among different hPSC lines. This is particularly true for the differentiation of hPSCs toward the endodermal lineage. Several groups have developed methods to screen hPSCs for their endodermal differentiation potential (EP). Particularly notable studies include (i) the use of WNT3A expression as a predictive biomarker, (ii) an embryoid body-based screen, and (iii) a transcriptomics-based approach. We recently developed a rapid screen to access the EP of hPSCs solely based on morphological analysis. The screen takes 4 days to perform and yields results that are easy to interpret. As the screen is based on our recently developed small molecule protocol for hepatocyte like cell (HLC) differentiation of hPSCs, this method is extremely cost-effective compared to the aforementioned approaches. © 2017 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Corpos Embrioides , Endoderma , Hepatócitos , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA