Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37037782

RESUMO

For the purpose of clarifying the relationship between pasteurization and inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Saccharomyces pastorianus cells induced by pressurized carbon dioxide microbubbles (CO2MB) treatment, a storage test of S. pastorianus cells after CO2MB treatment was conducted to ascertain their recovery, and the treatment condition in the inactivation of GAPDH in S. pastorianus cells by CO2MB was investigated. Each population of S. pastorianus for 48, 96, and 144 h at 25°C was decreased significantly by CO2MB treatment at 35°C for 3 min (MB35-3 and MB35-5) or at 40°C and 45°C for 1 and 3 min (MB40-1, MB40-3, and MB45-1). In the storage test, recovery of treated cells was not observed after storage for 144 h at 25°C. The denaturation of GAPDH in the S. pastorianus cells caused by the same treatment as the storage test was detected by using sodium dodecyl sulphate polyacrylamide gel electrophoresis. While the activities at MB35-1, MB35-3, and MB40-1 were significantly higher than those at non-treatment, and those at MB35-5, MB40-3, and MB45-1 were lower. Therefore, GAPDH denaturation, but not the activity, was associated with the inactivation of S. pastorianus cells.


Assuntos
Dióxido de Carbono , Saccharomyces , Dióxido de Carbono/farmacologia , Microbolhas , Gliceraldeído-3-Fosfato Desidrogenases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA